
User Manual

3-Heights™
PDF Security API

Version 4.9

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 1/102

Contents

1 Introduction . 6
1.1 Description . 6
1.2 Functions . 6
1.2.1 Features . 7
1.2.2 Formats . 7
1.2.3 Compliance . 8
1.3 Interfaces . 8
1.4 Operating Systems . 8
1.5 How to Best Read this Manual . 8
1.6 Digital Signatures . 8
1.6.1 Overview . 8
1.6.2 Terminology . 9
1.6.3 Why Digitally Signing? . 9
1.6.4 What is an Electronic Signature? . 10

Simple Electronic Signature . 10
Advanced Electronic Signature . 11
Qualified Electronic Signature . 11

1.6.5 How to Create Electronic Signatures . 11
Preparation Steps . 12
Application of the Signature . 12

2 Installation and Deployment . 14
2.1 Windows . 14
2.2 Unix . 14
2.2.1 All Unix Platforms . 15
2.2.2 macOS . 15
2.3 Interfaces . 16
2.3.1 Development . 16
2.3.2 Deployment . 18
2.4 Interface Specific Installation Steps . 19
2.4.1 COM Interface . 19
2.4.2 Java Interface . 19
2.4.3 .NET Interface . 20
2.4.4 C Interface . 20
2.5 Uninstall, Install a New Version . 20
2.6 Note about the Evaluation License . 20
2.7 Special Directories . 20
2.7.1 Directory for temporary files . 20
2.7.2 Cache Directory . 21
2.7.3 Font Directories . 21

3 License Management . 23
3.1 Graphical License Manager Tool . 23
3.1.1 List all installed license keys . 23
3.1.2 Add and delete license keys . 23
3.1.3 Display the properties of a license . 23
3.1.4 Select between different license keys for a single product . 23
3.2 Command Line License Manager Tool . 24
3.3 License Key Storage . 24

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 2/102

3.3.1 Windows . 24
3.3.2 macOS . 24
3.3.3 Unix/Linux . 25

4 Programming Interfaces . 26
4.1 Visual Basic 6 . 26
4.2 C/C++ . 27
4.3 .NET . 29
4.3.1 Visual Basic . 29
4.3.2 C# . 31
4.3.3 Deployment . 31

Detailed description . 31
Simplified description . 31

4.3.4 Troubleshooting: TypeInitializationException . 32
Troubleshooting: DllNotFoundException . 32
Troubleshooting: BadImageFormatException . 32

5 User’s Guide . 33
5.1 Overview of the API . 33
5.1.1 What is the 3-Heights™ PDF Security API about? . 33
5.2 How does the API work in general? . 33
5.3 Encryption . 34
5.3.1 Encryption and how it works in PDF . 34
5.3.2 Owner Password and User Password . 34
5.3.3 Permission Flags . 34
5.3.4 How to Encrypt a PDF Document . 35
5.3.5 How to Read an Encrypted PDF Document . 35
5.3.6 How secure is PDF Encryption? . 35
5.4 Fonts . 36
5.4.1 Font Cache . 36
5.5 Cryptographic Provider . 36
5.5.1 PKCS#11 Provider . 37

Configuration . 37
Interoperability Support . 38
Selecting a Certificate for Signing . 38
Using PKCS#11 stores with missing issuer certificates . 38

5.5.2 Windows Cryptographic Provider . 39
Configuration . 39
Selecting a Certificate for Signing . 41
Certificates . 41
Qualified Certificates . 43

5.5.3 3-Heights™ Signature Creation and Validation Service . 43
Configuration . 44
Selecting a Certificate for Signing . 44

5.5.4 SwissSign Digital Signing Service . 44
5.5.5 SwissSign SuisseID Signing Service . 45
5.5.6 QuoVadis sealsign . 47
5.5.7 Swisscom All-in Signing Service . 48

General Properties . 48
Provider Session Properties . 49
On-Demand Certificates . 50
Step-Up Authorization using Mobile-ID . 50

5.5.8 Custom Signature Handler . 50

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 3/102

5.6 How to Create Digital Signatures . 51
5.6.1 How to Sign a PDF Document . 51
5.6.2 How to Create a Preview of a Signed Document . 51
5.6.3 How to Create a PAdES LTV Signature . 52
5.6.4 How to Apply Multiple Signatures . 52
5.6.5 How to Create a Time-stamp Signature . 52
5.6.6 How to Create a Visual Appearance of a Signature . 53
5.6.7 Guidelines for Mass Signing . 53

Keep the session to the security device open for multiple sign operations 53
Signing concurrently using multiple threads . 54
Thread safety with a PKCS#11 provider . 54

5.6.8 Miscellaneous . 54
Caching of CRLs, OCSP, and Time-stamp Reponses . 54
How to Use a Proxy . 55
Configuration of Proxy Server and Firewall . 55

5.7 How to Validate Digital Signatures . 55
5.7.1 Validation of a Qualified Electronic Signature . 55

Trust Chain . 56
Revocation Information . 56
Time-stamp . 57

5.7.2 Validation of a PAdES LTV Signature . 58
Trust Chain . 58
Revocation information . 58
Time-stamp . 59
LTV expiration date . 59
Other PAdES Requirements . 59

5.8 Advanced Guide . 59
5.8.1 How to Use the in-Memory Functions . 59
5.9 Stamping . 60
5.9.1 Stamp File Syntax . 60

Stamp . 61
Coordinates . 62
Modify content of existing stamps . 63

Stamp content . 63
Text . 63
Images and Geometric Shapes . 66
Transformations . 67

5.9.2 Examples . 67
Example 1: Simple Stamps . 67
Example 2: Modify “Simple Stamp” . 68
Example 3: Add watermark text diagonally across pages . 69
Example 4: Apply stamp to long edge of all pages . 70
Example 5: Stamp links . 70

6 Reference Manual . 72
6.1 PdfSecure Interface . 72
6.1.1 AddDocMDPSignature . 72
6.1.2 AddPreparedSignature . 73
6.1.3 AddSignature . 73
6.1.4 AddSignatureField . 73
6.1.5 AddStamps . 74
6.1.6 AddStampsMem . 74

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 4/102

6.1.7 AddTimeStampSignature . 74
6.1.8 BeginSession . 74
6.1.9 Close . 75
6.1.10 ErrorCode . 75
6.1.11 ErrorMessage . 75
6.1.12 EndSession . 76
6.1.13 ForceEncryption . 76
6.1.14 ForceIncrementalUpdate . 76
6.1.15 ForceSignature . 76
6.1.16 GetPdf . 77
6.1.17 GetRevision, GetRevisionFile, GetRevisionStream . 77
6.1.18 GetMetadata . 77
6.1.19 GetSignature . 78
6.1.20 GetSignatureCount . 78
6.1.21 InfoEntry . 78
6.1.22 LicenseIsValid . 79
6.1.23 Linearize . 79
6.1.24 NoCache . 79
6.1.25 Open . 80
6.1.26 OpenMem . 80
6.1.27 PageCount . 81
6.1.28 ProductVersion . 81
6.1.29 RevisionCount . 81
6.1.30 RemoveSignatureField . 81
6.1.31 SaveAs . 81
6.1.32 SaveInMemory . 83
6.1.33 SetLicenseKey . 84
6.1.34 SetMetadata, SetMetadataStream . 84
6.1.35 SetSessionProperty . 84
6.1.36 SignatureCount . 85
6.1.37 SignPreparedSignature . 85
6.1.38 SignSignatureField . 85
6.1.39 Terminate . 85
6.1.40 TestSession . 86
6.1.41 ValidateSignature . 86
6.2 PdfSignature Interface . 87
6.2.1 ContactInfo . 87
6.2.2 Contents . 87
6.2.3 Date . 87
6.2.4 DocumentHasBeenModified . 88
6.2.5 Email . 88
6.2.6 EmbedRevocationInfo . 88
6.2.7 FillColor . 89
6.2.8 FieldName . 89
6.2.9 Filter . 89
6.2.10 FontName1 . 90
6.2.11 FontName2 . 90
6.2.12 Font1Mem . 90
6.2.13 Font2Mem . 90
6.2.14 FontSize1 . 90
6.2.15 FontSize2 . 90
6.2.16 HasSignature . 91

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 5/102

6.2.17 ImageFileName . 91
6.2.18 Issuer . 91
6.2.19 LineWidth . 91
6.2.20 Location . 91
6.2.21 Name . 92
6.2.22 PageNo . 92
6.2.23 Provider . 92
6.2.24 ProxyURL . 93
6.2.25 ProxyCredentials . 93
6.2.26 Reason . 93
6.2.27 Rect . 93
6.2.28 Revision . 94
6.2.29 SerialNumber . 94
6.2.30 SignerFingerprint . 94
6.2.31 SignerFingerprintStr . 94
6.2.32 Store . 95
6.2.33 StoreLocation . 95
6.2.34 StrokeColor . 95
6.2.35 SubFilter . 95
6.2.36 Text1 . 96
6.2.37 Text2 . 96
6.2.38 TimeStampCredentials . 96
6.2.39 TimeStampFingerprint . 97
6.2.40 TimeStampURL . 97
6.2.41 UserData . 97
6.3 Enumerations . 97
6.3.1 TPDFErrorCode . 97
6.3.2 TPDFPermission . 100

7 Licensing, Copyright, and Contact . 102

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 6/102

1 Introduction

1.1 Description

The 3-Heights™ PDF Security API enables the application of digital signatures to PDF documents and their subse-
quent protection through setting passwords and user authorizations.

Both standard signatures and qualified signatures that use signature cards (“smart cards”, “USB tokens”, “HSM”) can
be used.

PDF documents used in professional circumstances contain important information that needs to be protected
against misuse and unintentional alteration. This is achieved by protecting PDF documents through encryption
and user authorization rights.

PDF

PDF

List

Certificate

Time Server

OCSP Server

PDF Security Tool

Parameters

Decrypt

Encrypt

Verify Signature

D
ig

ita
l

Si
gn

at
ur

e

PDFPDFPDF

When exchanging electronic documents the ability to ascertain that a document is authentic and has not been
manipulated on its way from sender to recipient is of particular importance. This is only achievable through the use
of electronic signatures.

Through its interfaces (C, Java, .NET, COM) and thanks to its flexibility a developer can integrate the 3-Heights™ PDF
Security API in virtually any application.

1.2 Functions

The 3-Heights™ PDF Security API enables users to encrypt and—if the passwords are known—decrypt PDF docu-
ments. The tool can set and cancel all known PDF user authorizations. It can, for instance, set an owner password
so that only authorized users can edit and change the document. A user password ensures that only authorized
users have access to the document’s content. The tool’s signature module allows the user to apply, read and verify

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 7/102

both classic digital signatures and MDP (modification detection and prevention) signatures. The visibility and visual
appearance of digital signatures can be adapted to suit requirements. The tool also supports customized signature
handlers and types.

1.2.1 Features

Apply simple, advanced, and qualified electronic signatures
Apply PAdES LTV (Long Term Validation) signatures
Cache OCSP, CRL, and other data for mass signing
Apply modification detection & prevention (MDP) signatures
Apply document time-stamp signatures
Various types of cryptographic providers

Windows certificate store
Hardware such as Hardware Security Module (HSM), smart cards, and USB tokens
Online signature services
Custom signature handler plugin interface

Mass signing of documents
Extract digital signatures

Validate digital signatures
Remove digital signatures

Encrypt and decrypt PDF documents
Set user authorizations, including:

Print document
Modify document content
Extract or copy content
Add comments
Fill in form fields
Content extraction for accessibility
Assemble documents
Print in high resolution

Set crypt and stream filters
Set encryption strength
Set owner and user password

Stamping
Stamp text, images, or vector graphics
PDF/A compliant stamps
Modify existing stamps
Stamping of signed documents preserves existing signatures

Set document metadata
Optimize for the web (linearize)

1.2.2 Formats

Input Formats

PDF 1.x (e.g. PDF 1.4, PDF 1.5)
PDF/A-1, PDF/A-2, PDF/A-3

Target Formats

PDF 1.x (e.g. PDF 1.4, PDF 1.5)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 8/102

PDF/A-1, PDF/A-2, PDF/A-3

1.2.3 Compliance

Standards: ISO 32000-1 (PDF 1.7), ISO 19005-1 (PDF/A-1), ISO 19005-2 (PDF/A-2), ISO 19005-3 (PDF/A-3), PAdES
Part 2 and Part 4 (Long Term Validation, LTV)

1.3 Interfaces

The following interfaces are available: C, Java, .NET, COM.

1.4 Operating Systems

The 3-Heights™ PDF Security API is available for the following operating systems:

Windows 7, 8, 8.1, 10 – 32 and 64 bit
Windows Server 2008, 2008 R2, 2012, 2012 R2, 2016 – 32 and 64 bit
HP-UX 11i and later PA-RISC2.0 – 32 bit
HP-UX 11i and later ia64 (Itanium) – 64 bit
IBM AIX 6.1 and later – 64 bit
Linux 2.6 – 32 and 64 bit
Oracle Solaris 2.8 and later, SPARC and Intel
FreeBSD 4.7 and later (32 bit) or FreeBSD 9.3 and later (64 bit, on request)
macOS 10.4 and later – 32 and 64 bit

1.5 How to Best Read this Manual

If you are reading this manual for the first time, i.e. would like to evaluate the software, the following steps are
suggested.

1. Read the chapter Introduction to verify this product meets your requirements.
2. Identify what interface your programming language uses.
3. Read and follow the instructions in the chapter Installation and Deployment
4. In the chapter Interfaces find your programming language. Please note that not every language is covered in

this manual.
For many programming languages there is sample code available. For a start it is generally best to refer to these
samples rather than writing code from scratch.

5. (Optional) Read the chapter User’s Guide for general information about the API. Read the Reference Manual for
specific information about the functions of the API.

1.6 Digital Signatures

1.6.1 Overview

Digital signature is a large and slightly complex topic. This manual gives an introduction to digital signatures and
describes how the 3-Heights™ PDF Security API is used to apply them. It does however not describe all the technical
details.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 9/102

1.6.2 Terminology

Digital Signature is a cryptographic technique of calculating a number (a digital signature) for a message. Creat-
ing a digital signature requires a private key from a certificate. Validating a digital signature and its authorship
requires a public key. Digital Signature is a technical term.

Electronic Signature is a set of electronic data that is merged or linked to other electronic data in order to
authenticate it. Electronic Signatures can be created by means of a digital signature or other techniques. Electronic
Signature is a legal term.

Abbreviations

CA Certification Authority

CMS Cryptographic Message Syntax

CRL Certificate Revocation List

CSP Cryptographic Service Provider

HSM Hardware Security Module

OCSP Online Certificate Status Protocol

PKCS Public Key Cryptography Standards

QES Qualified Electronic Signature

TSA Time-stamp Authority

TSP Time-stamp Protocol

1.6.3 Why Digitally Signing?

The idea of applying a digital signature in PDF is very similar to a handwritten signature: A person reads a document
and signs it with its name. In addition to the name, the signature can contain further optional information, such as
the date and location. A valid electronic signature is a section of data that can be used to:

Ensure the integrity of the document
Authenticate the signer of the document
Prove existence of file prior to date (Time-stamp)

Digitally signing a document requires a certificate and its private key. How to access and use a certificate is described
in the chapter Cryptographic Provider.

In a PDF document, a digital signature consists of two parts:

A PDF related part This part consists of the PDF objects required to embed the signature into the PDF document.
This part depends on the signature type (Document Signature, MDP Signature, see table below). Information
such as name of the signer, reason, date, location is stored here. The signature may optionally have a visual
appearance on a page of the PDF document, which can contain text, graphics and images.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 10/102

This part of the signature is entirely created by the 3-Heights™ PDF Security API.

A cryptographic part A digital signature is based on a cryptographic checksum (hash value) calculated from the
content of the document that is being signed. If the document is modified at a later time, the computed hash
value is no longer correct and the signature becomes invalid, i.e. the validation will fail and will report that the
document has been modified since the signature was applied. Only the owner of the certificate and its private
key is able to sign the document. However, anybody can verify the signature with the public key contained in
the certificate.

This part of the signature requires a cryptographic provider for some cryptographic data and algorithms.

The 3-Heights™ PDF Security API supports the following types of digital signatures:

Document Signature Check the integrity of the signed part of the document and authenticate the signer’s iden-
tity. One or more signatures can be applied. A signed document can be modified and saved by incremental
update. The state of the document can be re-created as it existed at the time of signing.

MDP (Modification detection and prevention) Signature Enable detection of disallowed changes specified by
the author. A document can contain only one MDP signature; it must be the first in the document. Other docu-
ment signatures may be present.

Document Time-stamp Signature Establish the exact content of the file at the time indicated by the Time-stamp.
One or more document Time-stamp signatures can be applied. A signed document can be modified and saved
by incremental update.

1.6.4 What is an Electronic Signature?

There are different types of electronic signatures, which normally are defined by national laws, and therefore are
different for different countries. The type of electronic signatures required in a certain process is usually defined by
national laws. Quite advanced in this manner are German-speaking countries where such laws and an established
terminology exist. The English terminology is basically a translation from German.

Three types of electronic signatures are distinguished:

Simple Electronic Signature “Einfache Elektronische Signatur”
Advanced Electronic Signature “Fortgeschrittene Elektronische Signatur”
Qualified Electronic Signature (QES) “Qualifizierte Elektronische Signatur”

All applied digital signatures are PDF/A and PAdES compliant.

Simple Electronic Signature

A simple electronic signature requires any certificate that can be used for digital signing. The easiest way to retrieve
a certificate, which meets that requirement, is to create a so called self-signed certificate. Self-signed means it is
signed by its owner, therefore the issuer of the certificate and the approver of the legitimacy of a document signed
by this certificate is the same person.

Example:

Anyone could create a self-signed certificate issued by “Peter Pan” and issued to “Peter Pan”. Using this certificate
one is able to sign in the name of “Peter Pan”.

If a PDF document is signed with a simple electronic signature and the document is changed after the signature
had been applied, the signature becomes invalid. However, the person who applied the changes, could at the same
time (maliciously) also remove the existing simple electronic signature and - after the changes - apply a new, equally

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 11/102

looking Simple Electronic Signature and falsify its date. As we can see, a simple electronic signature is neither strong
enough to ensure the integrity of the document nor to authenticate the signer.

This drawback can overcome using an advanced or Qualified Electronic Signature.

Advanced Electronic Signature

Requirements for advanced certificates and signatures vary depending on the country where they are issued and
used.

An advanced electronic signature is based on an advanced certificate that is issued by a recognized certificate au-
thority (CA) in this country, such VeriSign, SwissSign, QuoVadis. In order to receive an advanced certificate, its owner
must prove its identity, e.g. by physically visiting the CA and presenting its passport. The owner can be an individual
or legal person or entity.

An advanced certificate contains the name of the owner, the name of the CA, its period of validity and other infor-
mation.

The private key of the certificate is protected by a PIN, which is only known to its owner.

This brings the following advantages over a simple electronic signature:

The signature authenticates the signer.
The signature ensures the integrity of the signed content.

Qualified Electronic Signature

Requirements for qualified certificates and signatures vary depending on the country where they are issued and
used.

A Qualified Electronic Signature is similar to an advanced electronic signature, but has higher requirements. The
main differences are:

It is based on a qualified certificate, which is provided as a hardware token (USB stick, smart card).
For every signature it is required to enter the PIN code manually. This means that only one signature can be
applied at a time.
Certificate revocation information (OCSP/CRL) can be acquired from an online service. The response (valid, re-
voked, etc.) must be embedded in the signature.
A Time-stamp (TSP) that is acquired from a trusted time server (TSA) may be required.

This brings the following advantages over an advanced electronic signature:

The signature ensures the certificate was valid at the time when the document was signed (due to the embed-
ding of the OCSP/CRL response).
The signature ensures the integrity of the time of signing (due to the embedding of the Time-stamp).
Legal processes that require a QES are supported.

Note: A Time-stamp can be added to any type of signature. OCSP/CRL responses
are also available for some advanced certificates.

1.6.5 How to Create Electronic Signatures

This is a simple example of how to create an electronic document signature. More detailed examples and examples
for other types of electronic signatures can be found in How to Create Digital Signatures.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 12/102

Preparation Steps

1. Identify whether an advanced or a qualified signature is required. For most automated processes an advanced
signature is sufficient.

2. Acquire a corresponding certificate from a CA. Note that some CA offer USB sticks or smart cards that contain
both, an advanced and a qualified certificate.

3. Setup and configure the certificate’s Cryptographic Provider.
In case the certificate resides on hardware such as an USB token or a Smart Card, the required middleware
(driver) needs to be installed.
In case the certificate is a soft certificate, it must be imported into the certificate store of a cryptographic
provider.

4. Optional: Acquire access to a trusted time server (TSA) (e.g. from the CA of your signing certificate).
5. Optional: Ensure your input documents conform to the PDF/A standard. It is recommended to sign PDF/A docu-

ments only, because this ensures that the file’s visual appearance is well defined, such than it can be reproduced
flawlessly and authentically in any environment. Furthermore, PDF/A conformance is typically required if the
file is to be archived. Because signed files cannot be converted to PDF/A without breaking its signatures, files
must be converted before signing.

Application of the Signature

Apply the signature by providing the following information:

1. The Cryptographic Provider where the certificate is located
2. Values for the selection of the signing certificate (e.g. the name of the certificate)
3. Optional: Time-stamp service URL (e.g. “http://server.mydomain.com:80/tsa”)
4. Optional: Time-stamp service credentials (e.g. username:password)
5. Optional: Embed revocation information (default: true)
6. Optional: Visual appearance of the signature on a page of the document (e.g. an image).

Example: Steps to Add an Electronic Document Signature

The 3-Heights™ PDF Security API applies PDF/A compliant signatures. This means if a PDF/A document is digitally
signed, it remains PDF/A compliant.

In order to add an electronic document signature with the 3-Heights™ PDF Security API the following steps need to
be done:

1. Create a new PdfSignature object
2. As value of the PdfSignature’s name, the name of the certificate that is to be used must be provided. The

name of the certificate corresponds to the value "Issued to:".
3. If the certificate’s private key is PIN protected, the PIN can be passed in the provider configuration.
4. Additional parameters can now be set such as the reason why the signature is applied, etc.

In Visual Basic the four steps above look like this:

Dim Document As New PDFSECUREAPILib.PdfSecure

Document.Open "input.pdf", ""

Dim Signature As New PDFSECUREAPILib.PdfSignature

Signature.Name = "Philip Renggli"

Signature.Provider = "cvp11.dll;0;secret-pin"

Signature.Reason = "I reviewed the document" ' optional

Signature.Rect = Array(10, 10, 210, 60) ' optional visual appearance

Signature.TimeStampURL = "http://server.mydomain.com:80/tsa" ' optional

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 13/102

Document.AddSignature Signature

Document.SaveAs "output.pdf"

Document.Close

The visual appearance of the digital signature on a page of the resulting output-document looks as shown below:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 14/102

2 Installation and Deployment

2.1 Windows

The 3-Heights™ PDF Security API comes as a ZIP archive containing various files including runtime binary executable
code, files required for the developer, documentation and license terms.

1. Download the ZIP archive of the product from your download account at https://www.pdf-tools.com.
2. Unzip the file using a tool like WinZip available from WinZip Computing, Inc. at http://www.winzip.com to

a directory on your hard disk where your program files reside (e.g. C:\Program Files\PDF Tools AG)
3. Check the appropriate option to preserve file paths (folder names). The unzip process now creates the following

subdirectories:

Subdirectory Description

bin Contains the runtime executable binary code.

doc Contains documentation files.

include Contains header files to in include in your C/C++ project.

jar Contains java archive files for java components.

lib Contains the object file library to include in your C/C++ project.

samples Contains sample programs in various programming languages

There is the option to download the software as MSI file, which makes the installation easier. Only one version
(32 or 64 bit) can be installed using the MSI file. In order to install both versions the ZIP file should be used.

4. Optionally register your license key using the License Management.
5. Identify which interface you are using. Perform the specific installation steps for that interface described in

chapter Interface Specific Installation Steps
6. Make sure your platform meets the requirements regarding fonts described in chapter Fonts.
7. If you want to sign documents, proceed with setting up your cryptographic provider as described in chapter

Cryptographic Provider.
8. If you want to stamp text, proceed with setting the fonts required as described in chapter Fonts.

2.2 Unix

This section describes installation steps required on all Unix platforms, which includes Linux, macOS, Oracle Solaris,
IBM AIX, HP-UX, FreeBSD and others.

The Unix version of the 3-Heights™ PDF Security API provides two interfaces:

Java interface
Native C interface

Here is an overview of the shared libraries and other files that come with the 3-Heights™ PDF Security API:

https://www.pdf-tools.com
http://www.winzip.com

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 15/102

File Description

Name Description

bin/libPdfSecureAPI.so This is the shared library that contains the main functionality. The file
extension varies depending on the UNIX platform.

doc/*.* Documentation

jar/SECA.jar Java API archive.

include/*.h Contains files to include in your C/C++ Project.

Example code written in different programming languages are available at product page of the PDF Tools AG web-
site.

2.2.1 All Unix Platforms

1. Unpack the archive in an installation directory, e.g. /opt/pdf-tools.com/
2. Copy or link the shared object into one of the standard library directories, e.g:

ln -s /opt/pdf-tools.com/bin/libPdfSecureAPI.so /usr/lib

3. Verify that the GNU shared libraries required by the product are available on your system:
On Linux:

ldd libPdfSecureAPI.so

On AIX:

dump -H libPdfSecureAPI.so

In case you have not installed the GNU shared libraries yet, proceed as follows:
a. Go to http://www.pdf-tools.com and navigate to “Support” →“Resources”.
b. Download the GNU shared libraries for your platform.
c. Extract the archive and copy or link the libraries into your library directory, e.g /usr/lib or /usr/lib64.
d. Verify that the GNU shared libraries required by the product are available on your system now.

4. Optionally register your license key using the Command Line License Manager Tool.
5. Identify which interface you are using. Perform the specific installation steps for that interface described in

chapter Interface Specific Installation Steps
6. Make sure your platform meets the requirements regarding fonts described in chapter Fonts.
7. If you want to sign documents, proceed with setting up your cryptographic provider as described in chapter

Cryptographic Provider.
8. If you want to stamp text, proceed with setting the fonts required as described in chapter Fonts.

2.2.2 macOS

The shared library must have the extension .jnilib for use with Java. We suggest that you create a file link for
this purpose by using the following command:

http://www.pdf-tools.com
http://www.pdf-tools.com
http://www.pdf-tools.com

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 16/102

ln libPdfSecureAPI.dylib libPdfSecureAPI.jnilib

2.3 Interfaces

The 3-Heights™ PDF Security API provides four different interfaces. The installation and deployment of the software
depend on the interface you are using. The table below shows the supported interfaces and examples with which
programming languages they can be used.

Interface Programming Languages

.NET The MS software platform .NET can be used with any .NET capable programming language such
as:

C#
VB .NET
J#
others

This interface is available in the Windows version only.

Java The Java interface is available on all platforms.

COM The component object model (COM) interface can be used with any COM-capable programming
language, such as:

MS Visual Basic
MS Office Products such as Access or Excel (VBA)
C++
VBScript
others

This interface is available in the Windows version only.

C The native C interface is for use with C and C++. This interface is available on all platforms.

2.3.1 Development

The software developer kit (SDK) contains all files that are used for developing the software. The role of each file with
respect to the four different interfaces is shown in table Files for Development. The files are split in four categories:

Req. This file is required for this interface.

Opt. This file is optional. See also table File Description to identify which files are required for your application.

Doc. This file is for documentation only.

Empty field An empty field indicates this file is not used at all for this particular interface.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 17/102

Files for Development

Name .NET Java COM C

bin\PdfSecureAPI.dll Req. Req. Req. Req.

bin*NET.dll Req.

bin*NET.xml Doc.

doc*.pdf Doc. Doc. Doc. Doc.

doc\PdfSecureAPI.idl Doc.

doc\javadoc*.* Doc.

include\pdfsecureapi_c.h Req.

include*.* Opt.

jar\SECA.jar Req.

lib\PdfSecureAPI.lib Req.

samples*.* Doc. Doc. Doc. Doc.

The purpose of the most important distributed files of is described in table File Description.

File Description

Name Description

bin\PdfSecureAPI.dll This is the DLL that contains the main functionality (required).

bin*NET.dll The .NET assemblies are required when using the .NET interface. The files
bin*NET.xml contain the corresponding XML documentation for MS Visual
Studio.

doc*.* Various documentations.

include*.* Contains files to include in your C / C++ project.

lib\PdfSecureAPI.lib The object file library needs to be linked to the C/C++ project.

jar\SECA.jar The Java API archive.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 18/102

File Description

samples*.* Contains sample programs in different programming languages.

2.3.2 Deployment

For the deployment of the software only a subset of the files are required. Which files are required (Req.), optional
(Opt.) or not used (empty field) for the four different interfaces is shown in the table below.

Files for Deployment

Name .NET Java COM C

bin\PdfSecureAPI.dll Req. Req. Req. Req.

bin*NET.dll Req.

jar\SECA.jar Req.

The deployment of an application works as described below:

1. Identify the required files from your developed application (this may also include color profiles).
2. Identify all files that are required by your developed application.
3. Include all these files into an installation routine such as an MSI file or simple batch script.
4. Perform any interface-specific actions (e.g. registering when using the COM interface).

Example: This is a very simple example of how a COM application written in Visual Basic 6 could be deployed.

1. The developed and compiled application consists of the file securer.exe. Color profiles are not used.
2. The application uses the COM interface and is distributed on Windows only.

The main DLL PdfSecureAPI.dll must be distributed.
3. All files are copied to the target location using a batch script. This script contains the following commands:

copy securer.exe %targetlocation%\.

copy PdfSecureAPI.dll %targetlocation%\.

4. For COM, the main DLL needs to be registered in silent mode (/s) on the target system. This step requires Power-
User privileges and is added to the batch script.

regsvr32 /s %targetlocation%\PdfSecureAPI.dll.

1 These files must reside in the same directory as PdfSecureAPI.dll.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 19/102

2.4 Interface Specific Installation Steps

2.4.1 COM Interface

Registration Before you can use the 3-Heights™ PDF Security API component in your COM application program
you have to register the component using the regsvr32.exe program that is provided with the Windows oper-
ating system. The following command shows the registration of PdfSecureAPI.dll. Note that in Windows Vista and
later, the command needs to be executed from an administrator shell.

regsvr32 "C:\Program Files\PDF Tools AG\bin\PdfSecureAPI.dll"

If you are using a 64 bit operating system and would like to register the 32 bit version of the 3-Heights™ PDF Se-
curity API, you need to use the regsvr32 from the directory %SystemRoot%\SysWOW64 instead of %Sys-
temRoot%\System32.2

If the registration process succeeds, a corresponding dialog window is displayed. The registration can also be done
silently (e.g. for deployment) using the switch /s.

Other Files The other DLLs do not need to be registered, but for simplicity it is suggested that they reside in the
same directory as the PdfSecureAPI.dll.

2.4.2 Java Interface

The 3-Heights™ PDF Security API requires Java version 1.4 or higher.

For compilation and execution When using the Java interface, the Java wrapper jar\SECA.jar needs to be
on theCLASSPATH. This can be done by either adding it to the environment variableCLASSPATH, or by specifying
it using the switch -classpath:

javac -classpath ".;C:\pdf-tools\jar\SECA.jar" sample.java

For execution Additionally the libraryPdfSecureAPI.dllneeds be in one of the system’s library directories3 or
added to the Java system propertyjava.library.path. This can be achieved by either adding it dynamically at
program startup before using the API, or by specifying it using the switch-Djava.library.pathwhen starting
the Java VM.

java -classpath ".;C:\pdf-tools\jar\SECA.jar" ^

 -Djava.library.path=C:\pdf-tools\bin sample

Note that on Unix-type systems, the path separator usually is a colon and hence the above changes to something
like:

... -classpath ".:/path/to/SECA.jar" ...

2 Otherwise you get the following message:
LoadLibrary("PdfSecureAPI.dll") failed - The specified module could not be found.

3 On Windows defined by the environment variable PATH and e.g. on Linux defined by LD_LIBRARY_PATH.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 20/102

2.4.3 .NET Interface

The 3-Heights™ PDF Security API does not provide a pure .NET solution. Instead, it consists of .NET assemblies, which
are added to the project and a native DLL, which is called by the .NET assemblies. This has to be accounted for when
installing and deploying the tool.

The .NET assemblies (*NET.dll) are to be added as references to the project. They are required at compilation
time.

PdfSecureAPI.dll is not a .NET assembly, but a native DLL. It is not to be added as a reference in the project.

The native DLL PdfSecureAPI.dll is called by the .NET assembly PdfSecureNET.dll.

PdfSecureAPI.dll must be found at execution time by the Windows operating system. The common way to
do this is adding PdfSecureAPI.dll as an existing item to the project and set its property “Copy to output
directory” to “Copy if newer”.

Alternatively the directory wherePdfSecureAPI.dll resides can be added to the environment variable%Path%
or it can simply be copied manually to the output directory.

2.4.4 C Interface

The header file pdfsecureapi_c.h needs to be included in the C/C++ program.
The library PdfSecureAPI.lib needs to be linked to the project.
The dynamic link library PdfSecureAPI.dll needs to be in a path of executables (e.g. on the environment
variable %PATH%).

2.5 Uninstall, Install a New Version

If you used the MSI for the installation, go to Start → 3-Heights™ PDF Security API. . . → Uninstall . . .

If you used the ZIP file: In order to uninstall the product undo all the steps done during installation, e.g. un-register
using regsvr32 -u, delete all files, etc.

Installing a new version does not require to previously uninstall the old version. The files of the old version can
directly be overwritten with the new version. If using the COM interface, the new DLL must be registered, un-
registering the old version is not required.

2.6 Note about the Evaluation License

With the evaluation license the 3-Heights™ PDF Security API automatically adds a watermark to the output files.

2.7 Special Directories

2.7.1 Directory for temporary files

This directory for temporary files is used for data specific to one instance of a program. The data is not shared
between different invocations and deleted after termination of the program.

The directory is determined as follows. The product checks for the existence of environment variables in the follow-
ing order and uses the first path found:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 21/102

Windows

1. The path specified by the %TMP% environment variable.
2. The path specified by the %TEMP% environment variable.
3. The path specified by the %USERPROFILE% environment variable.
4. The Windows directory.

Unix

1. The path specified by the $PDFTMPDIR environment variable.
2. The path specified by the $TMP environment variable.
3. The /tmp directory.

2.7.2 Cache Directory

The cache directory is used for data that is persisted and shared between different invocations of a program. The
actual caches are created in subdirectories. The content of this directory can safely be deleted to clean all caches.

This directory should be writable by the application, otherwise caches cannot be created or updated and perfor-
mance will degrade significantly.

Windows

If the user has a profile:
%LOCAL_APPDATA%\PDF Tools AG\Caches

If the user has no profile:
<TempDirectory>\PDF Tools AG\Caches

Linux, macOS and other Unixes

If the user has a home directory:
~/.pdf-tools/Caches

If the user has no home directory:
<TempDirectory>/pdf-tools/Caches

where <TempDirectory> refers to the Directory for temporary files.

2.7.3 Font Directories

The location of the font directories depends on the operating system. Font directories are traversed recursively in
the order as specified below.

If two fonts with the same name are found, the latter one takes precedence, i.e. user fonts will always take prece-
dence over system fonts.

Windows

1. %SystemRoot%\Fonts

2. directory Fonts, which must be a direct sub-directory of where PdfSecureAPI.dll resides.

macOS

1. /System/Library/Fonts

2. /Library/Fonts

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 22/102

Linux and other Unixes

1. /usr/share/fonts

2. /usr/local/share/fonts

3. ~/.fonts

4. $PDFFONTDIR or /usr/lib/X11/fonts/Type1

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 23/102

3 License Management

There are three possibilities to pass the license key to the application:

1. The license key is installed using the GUI tool (graphical user interface). This is the easiest way if the licenses are
managed manually. It is only available on Windows.

2. The license key is installed using the shell tool. This is the preferred solution for all non-Windows systems and
for automated license management.

3. The license key is passed to the application at run-time via the SetLicenseKey method. This is the preferred
solution for OEM scenarios.

3.1 Graphical License Manager Tool
The GUI tool LicenseManager.exe is located in the bin directory of the product kit.

3.1.1 List all installed license keys

The license manager always shows a list of all installed license keys in the left pane of the window. This includes
licenses of other PDF Tools products. The user can choose between:

Licenses available for all users. Administrator rights are needed for modifications.
Licenses available for the current user only.

3.1.2 Add and delete license keys

License keys can be added or deleted with the “Add Key” and “Delete” buttons in the toolbar.

The “Add key” button installs the license key into the currently selected list.
The “Delete” button deletes the currently selected license keys.

3.1.3 Display the properties of a license

If a license is selected in the license list, its properties are displayed in the right pane of the window.

3.1.4 Select between different license keys for a single product

More than one license key can be installed for a specific product. The check-box on the left side in the license list
marks the currently active license key.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 24/102

3.2 Command Line License Manager Tool

The command line license manager tool licmgr is available in the bin directory for all platforms except Windows.

A complete description of all commands and options can be obtained by running the program without parameters:

licmgr

List all installed license keys:

licmgr list

The currently active license for a specific product is marked with a star ’*’ on the left side.

Add and delete license keys:

Install new license key:

licmgr store X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Delete old license key:

licmgr delete X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Both commands have the optional argument -s that defines the scope of the action:

g For all users

u Current user

Select between different license keys for a single product:

licmgr select X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

3.3 License Key Storage
Depending on the platform the license management system uses different stores for the license keys.

3.3.1 Windows

The license keys are stored in the registry:

“HKLM\Software\PDF Tools AG” (for all users)
“HKCU\Software\PDF Tools AG” (for the current user)

3.3.2 macOS

The license keys are stored in the file system:

/Library/Application Support/PDF Tools AG (for all users)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 25/102

~/Library/Application Support/PDF Tools AG (for the current user)

3.3.3 Unix/Linux

The license keys are stored in the file system:

/etc/opt/pdf-tools (for all users)
~/.pdf-tools (for the current user)

Note: The user, group and permissions of those directories are set solely by
the license manager tool. It may be necessary to change permissions to make the
licenses readable for all users. Example:

chmod -R go+rx /etc/opt/pdf-tools

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 26/102

4 Programming Interfaces

4.1 Visual Basic 6

After installing the 3-Heights™ PDF Security API and registering the COM interface (see chapter Installation and
Deployment), you find a Visual Basic 6 example PdfSecureAPI.vbp in the directory samples/VB/. You can
either use this sample as a base for an application, or you can start from scratch.

If you start from scratch, here is a quick start guide for you:

1. First create a new Standard-Exe Visual Basic 6 project. Then include the 3-Heights™ PDF Security API component
to your project.

2. Draw a new Command Button and optionally rename it if you like.
3. Double-click the command button and insert the few lines of code below. All that you need to change is the

path of the file name.

Private Sub Command1_Click()

 Dim Secure As New PDFSECUREAPILib.PdfSecure

 Secure.Open "C:\input.pdf", ""

 Secure.SaveAs "C:\output.pdf", "", "pwd", ePermPrint, 40

 Secure.Close

End Sub

And that’s all—four lines of code. Create the object, open the input file, create the output file with no user password,
owner password “owner”, allow printing and use 40 bit encryption key.

Example: More advanced

The following Visual Basic 6 sample assumes an interface with:

Text fields (txt*) for the input and output file names, as well as the passwords.
Check boxes (chk*) with a value to be set to 0 or 1 for all the permission flags.

Private Sub CreateOutput_Click()

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 27/102

 Dim doc As New PDFSECUREAPILib.PdfSecure

 Dim iPerm As Integer

 done = doc.Open(txtInput.Text, txtPwd.Text)

 ' Open the input fil

 If Not done Then

 If doc.ErrorCode = PDF_E_PASSWORD Then

 MsgBox "Input file is encrypted and Password not correct."

 Else

 MsgBox "Couldn't open input file."

 End If

 Exit Sub

 End If

 ' Set the permissions

 iPerm = chkPrint.Value * ePermPrint _

 + chkModify.Value * ePermModify _

 + chkCopy.Value * ePermCopy _

 + chkAnnot.Value * ePermAnnotate _

 + chkFill.Value * ePermFillForms _

 + chkExtr.Value * ePermSupportDisabilities _

 + chkAssemble.Value * ePermAssemble _

 + chkDPrint * ePermDigitalPrint

 iKey = 128

 ' Save the output file

 If Not doc.SaveAs(txtOutput.Text, txtUser.Text, txtOwner.Text, iPerm, iKey)

 Then

 MsgBox "Output file could not be created."

 End If

 done = doc.Close

End Sub

4.2 C/C++

In order to use the 3-Heights™ PDF Security API in a C project the following steps should be done. (Note: Steps and
Screenshots are specifically described for the MS Studio 6)

1. Add the header files pdfsecureapi_c.h and pdfsecuritydecl.h to the include directories.
2. Link to the object file library. (Windows: PdfSecureAPI.lib)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 28/102

3. Add the path where the dynamic link library PdfSecureAPI.dll resides to the “Executable files directories”.
E.g. as shown in the screenshot below. In most cases it suffices to simply add it to the environment variable
Path.

There is a C sample available within the ZIP archive of the evaluation and release version that shows how to decrypt
and encrypt a PDF document, as well as how to add a digital signature. The C sample below is much simpler and
does not add a digital signature.

Before the C interface can be used to create objects, it must be initialized once. This is done usingPdfSecureIni-
tialize, to un-initialize use PdfSecureUnInitialize. Other than that, equal call sequences as in the COM
interface can be used.

#include <stdio.h>

#include "pdfsecureapi_c.h"

#include "pdfsecuritydecl.h"

int main(int argc, char* argv[])

{

 TPdfSecure* pPdfSecure;

 PdfSecureInitialize();

 pPdfSecure = PdfSecureCreateObject();

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 29/102

 PdfSecureOpen(pPdfSecure, argv[1], "");

 PdfSecureSaveAsA(pPdfSecure, argv[2], "", "pwd", ePermPrint, 128, "", "");

 PdfSecureClose(pPdfSecure);

 PdfSecureDestroyObject(pPdfSecure);

 PdfSecureUnInitialize();

 return 0;

}

4.3 .NET

There should be at least one .NET sample for MS Visual Studio available in the ZIP archive of the Windows version of
the 3-Heights™ PDF Security API. The easiest for a quick start is to refer to this sample.

In order to create a new project from scratch, do the following steps:

1. Start Visual Studio and create a new C# or VB project.
2. Add references to the .NET assemblies.

To do so, in the “Solution Explorer” right-click your project and select “Add Reference. . .”. The “Add Refer-
ence” dialog will appear. In the tab “Browse”, browse for the .NET assemblies libpdfNET.dll and PdfSe-

cureNET.dll.
Add them to the project as shown below:

3. Import namespaces (Note: This step is optional, but useful.)
4. Write your code.

Steps 3 and 4 are shown separately for C# and Visual Basic.

4.3.1 Visual Basic

3. Double-click “My Project” to view its properties. On the left hand side, select the menu “References”. The .NET as-
semblies you added before should show up in the upper window. In the lower window import the namespaces
Pdftools.Pdf, and Pdftools.PdfSecure.
You should now have settings similar as in the screenshot below:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 30/102

4. The .NET interface can now be used as shown below:

Example:

Dim doc As New PdfSecure.Secure

Dim sig As New PdfSecure.Signature

doc.Open(...)

...

If Not doc.SaveAs("C:\temp\output.pdf", _

 "", _

 "pwd", _

 PDFPermission.ePermPrint, _

 128, _

 "V2", _

 "V2") = True Then

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 31/102

4.3.2 C#

3. Add the following namespaces:

Example:

using Pdftools.Pdf;

using Pdftools.PdfSecure;

4. The .NET interface can now be used as shown below:

Example:

using (Secure doc = new Secure())

{

 doc.Open(...)

 using (Signature sig = new Signature())

 {

 ...

 doc.AddSignature(sig)

 ...

 }

}

4.3.3 Deployment

This is a guideline on how to distribute a .NET project that uses the 3-Heights™ PDF Security API.

Detailed description

1. The project must be compiled using Microsoft Visual Studio. Hereby it is cruciual that the solution platform (x86
or x64) matches the platform of the native DLL PdfSecureAPI.dll.

2. The executable is created in the directory bin\Release.
3. For deployment, the executable and all .NET assemblies must be copied into the same folder on the target

computer. The .NET assemblies of the 3-Heights™ PDF Security API have the file name *NET.dll.
4. At runtime, the native DLL PdfSecureAPI.dll must be found on the target computer by the DLL search

sequence. To ensure this, the DLL must either be copied to the folder containing the executable or to a directory
on the environment variable Path (e.g. %SystemRoot%\system32).

5. If required by the application, optional DLLs must be copied to the same folder. See Deployment for a list and
description of optional DLLs.

Simplified description

1. Compile the project using Microsoft Visual Studio.
2. Deploy your executable and all files in the directory bin of the 3-Heights™ PDF Security API’s installation direc-

tory to the same directory on the target computer.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 32/102

4.3.4 Troubleshooting: TypeInitializationException

The most common issue when using the .NET interface is that the correct native DLL PdfSecureAPI.dll is not
found at execution time. This normally manifests when the constructor is called for the first time and an exception
of type System.TypeInitializationException is thrown.

This exception can have two possible causes, distinguishable by the inner exception (propertyInnerException):

System.DllNotFoundException Unable to load DLL PdfSecureAPI.dll: The specified module could
not be found.

System.BadImageFormatException An attempt was made to load a program with an incorrect format.

The following sections describe in more detail, how to resolve the respective issue.

Troubleshooting: DllNotFoundException

This means, that the native DLL PdfSecureAPI.dll could not be found at execution time.

Resolve this by either:

addingPdfSecureAPI.dll as an existing item to your project and set its property “Copy to output directory”
to “Copy if newer”, or
adding the directory where PdfSecureAPI.dll resides to the environment variable %Path%, or
copying PdfSecureAPI.dll to the output directory of your project.

Troubleshooting: BadImageFormatException

The exception means, that the native DLLPdfSecureAPI.dll has the wrong “bitness” (i.e. platform 32 vs. 64 bit).
There are two versions of PdfSecureAPI.dll available: one is 32-bit (name of product kit download contains
WIN32) and the other 64-bit (name of download contains X64). It is crucial, that the platform of the native DLL
matches the platform of the application’s process.

The platform of the application’s process is defined by the project’s platform configuration for which there are 3 pos-
sibilities:

AnyCPU This means, that the application will run as a 32-bit process on 32-bit Windows and as 64-bit process
on 64-bit Windows. When using AnyCPU one has to use a different native DLL, depending on the platform of
Windows. This can be ensured either when installing the application (by installing the matching native DLL)
or at application start-up (by determining the application’s platform and ensuring the matching native DLL is
loaded).

x86 This means, that the application will always run as 32-bit process, regardless of the platform of the Windows
installation. The 32-bit DLL runs on all systems, which makes this the simplest configuration. Hence, if an ap-
plication needs to be portable and does not require any specific 64-bit features, it is recommended to use this
setting.

x64 This means, that the application will always run as 64-bit process. As a consequence the application will not
run on a 32-bit Windows system.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 33/102

5 User’s Guide

5.1 Overview of the API

5.1.1 What is the 3-Heights™ PDF Security API about?

The 3-Heights™ PDF Security API provides three key functionalities related to security in PDF documents:

1. Deal with encryption, decryption and access permissions of PDF documents
2. Deal with digital signatures
3. Apply stamps to PDF documents

These three functionalities can be combined; they however are not closely related. What encryption and what a
digital signature is, is described in the upcoming chapters.

5.2 How does the API work in general?
The 3-Heights™ PDF Security API requires a PDF document as input. In this manual, that document is referred to as
input-document. In the graphic below that’s the document on the left hand side. The document can be opened
from file or from memory. If the document is encrypted, it is in a first step decrypted.

In the next step, application specific operations are applied. These can be setting new passwords and access per-
missions or add a digital signature (not shown in graphic).

After that, a new PDF document is created according to the defined settings. In this manual, the new resulting docu-
ment is referred to as output-document. The input-document is never changed by the 3-Heights™ PDF Security API.
Thus, the output-document must be a new document. It is not possible to directly overwrite the input-document.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 34/102

5.3 Encryption

5.3.1 Encryption and how it works in PDF

A PDF document can be encrypted to protect its contents from unauthorized access. The encryption process applies
encryption to all streams (e.g. images) and strings, but not to other items in the PDF document. This means the
structure of the PDF document is accessible, but the content of its pages is encrypted.

When encryption is used in PDF, a security handler must be selected. The 3-Heights™ PDF Security API always uses
the standard security handler which, according to the PDF Specification, has to be supported by any software that
can process encrypted PDF documents.

For more detailed information about PDF encryption in general, see PDF Reference, chapter 3.5.

5.3.2 Owner Password and User Password

The standard security handler allows access permissions and up to two passwords to be specified for a document:
An owner password and a user password.

user password protects the document against unauthorized opening and reading. If a PDF document is pro-
tected by a user password, either the user or owner password must be provided to open and read the document.
If a document has a user password, it must have an owner password as well. If no owner password is defined,
the owner password is the same as the user password.

owner password is also referred to as the author’s password. This password grants full access to the document.
Not only can the document be opened and read, it also allows for changing the document’s security settings
(access permission and passwords).

The following table shows the four possible combinations of passwords and how an application processing such a
PDF document behaves.

Owner and User Passwords

UserPwd OwnerPwd Behavior

none none Everyone can read. Everyone can change security settings. (No encryption)

none set Everyone can read. The user password is an empty string. Owner password
required to change security settings.

set none User password required to read. The owner password is equal to the user
password. User password required to change security settings.

set set User or owner password required to read. Owner password required to change
security settings.

5.3.3 Permission Flags

What operations in a PDF document are granted is controlled via its permission flags. In order to set permission flags,
the PDF document must be encrypted and have an owner password. The owner password is required to initially set
or later change the permission flags.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 35/102

These access permission flags are:

Modifying the content of the document
Copying or extracting text and graphics from the document
Adding or modifying text annotations and interactive form fields
Printing the document (low or high quality)
Filling in form and digitally signing the document
Assembling the document (inserting, rotating, deleting pages, etc.)

5.3.4 How to Encrypt a PDF Document

If either of the passwords or permission flags is set, the document is encrypted.

If only a user password is set, but no owner password and no permission flags, the owner password is equal to the
user password and all permissions are granted.

In the 3-Heights™ PDF Security API, the passwords and permission flags are provided as parameters of the SaveAs
function. Note that the PDF Specification accepts an empty string as password. PDF applications by default try to
open documents with the empty string password.

To encrypt a document and protect it against any manipulations other than printing, the document must have an
owner password and the print permission flag set. In Visual Basic such as SaveAs call would look like this:

SaveAs("C:\temp\output.pdf", "", "ownerpwd", ePermPrint)

To encrypt a document similar as above, but in addition also have the application prompt the user for a password
to open and read the document, you can add a user password as additional parameter in the SaveAs function:

SaveAs("C:\temp\output.pdf", "userpwd", "ownerpwd", ePermPrint)

To not encrypt a document at all, set empty passwords and ePermNoEncryption (-1) for permission flags:

SaveAs("C:\temp\output.pdf", "", "", ePermNoEncryption)

5.3.5 How to Read an Encrypted PDF Document

A PDF document which is not encrypted or protected with an owner password only, can be read and decrypted by
the 3-Heights™ PDF Security API’s Open function without providing a password.

In Visual Basic that looks like this:

Open("C:\temp\input.pdf", "")

A PDF document which is protected by a user password can only be opened if either the user or the owner password
is provided as parameter in the Open function. Technically it does not matter later on which of the two passwords
was provided, because both will grant full access to the document. However it is up to the application programmer
to distinguish between input-documents that are password protected or not.

5.3.6 How secure is PDF Encryption?

Any PDF application that is to process or display a PDF document must be able to read and decrypt the contents of
the pages in order to be able to display them. It technically cannot display an encrypted text or image without first
decrypting it. A PDF application program has therefore full access to any PDF document it can decrypt and display.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 36/102

PDF application programs, such as all products of the PDF Security API family, or Adobe Acrobat, can open and
decrypt PDF documents which have an owner password but no user password, without knowing that password.
Otherwise they couldn’t display the document. The application at that point has full access to the document. How-
ever this does not imply the user of this application is given the same access rights. The user should only be given
the access permissions defined by the permission flags and the password he provided. Any PDF application which
behaves different from that can allow for changing the security settings or completely removing encryption from
the document as long as the original document does not have a user password.

The user password protects the document, so that it only can be opened if the user or owner password is known.
No PDF application program can open a user-password protected PDF document without providing the password.
The security of such a document however strongly depends on the password itself. Like in most password related
situations insecure passwords can easily be found programmatically. E.g. a brute force attempt testing all passwords
which either exist as word in a dictionary or have less than six characters only takes minutes.

5.4 Fonts

Some features of the 3-Heights™ PDF Security API require fonts to be installed, e.g. for stamping text or the creation
of the visual appearance of digital signatures.

5.4.1 Font Cache

A cache of all fonts in all Font Directories is created. If fonts are added or removed from the font directories, the
cache is updated automatically.

In order to achieve optimal performance, make sure that the cache directory is writable for the 3-Heights™ PDF
Security API. Otherwise the font cache cannot be updated and the font directories have to be scanned on each
program startup.

The font cache is created in the subdirectory <CacheDirectory>/Installed Fonts of the Cache Directory.

5.5 Cryptographic Provider

In order to use the 3-Heights™ PDF Security API’s cryptographic functions such as creating digital signatures, a cryp-
tographic provider is required. The cryptographic provider manages certificates, their private keys and implements
cryptographic algorithms.

The 3-Heights™ PDF Security API can use various different cryptographic providers. The following list shows, for
which type of signing certificate which provider can be used.

USB Token or Smart Card These devices typically offer a PKCS#11 interface, which is the recommended way to
use the certificate →PKCS#11 Provider.

On Windows, the certificate is usually also available in the Windows Cryptographic Provider.

If you need to sign documents on a non-Windows system with an USB token that does not come with middle-
ware for your platform, you can use the 3-Heights™ Signature Creation and Validation Service.

If you need to sign documents on Windows in a non-interactive or locked session4, use the 3-Heights™ Signature
Creation and Validation Service.

Hardware Security Module (HSM) HSMs always offer very good PKCS#11 support →PKCS#11 Provider

For more information and installation instructions consult the separate document TechNotePKCS11.pdf.

4 See the description of the 3-Heights™ Signature Creation and Validation Service for more details on this topic.

TechNotePKCS11.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 37/102

Soft Certificate Soft certificates are typically PKCS#12 files that have the extension .pfx or .p12 and contain
the signing certificate as well as the private key and trust chain (issuer certificates). Soft certificate files cannot
be used directly. Instead, they must be imported into the certificate store of a cryptographic provider.

All Platforms: The recommended way of using soft certificates is to import them into a store that offers a
PKCS#11 interface and use the PKCS#11 Provider. For example:

A HSM
openCryptoki on Linux
PKCS#11 softtoken on Solaris

For more information and installation instructions of the above stores consult the separate document
TechNotePKCS11.pdf.
Windows: If no PKCS#11 provider is available, soft certificates can be imported into Windows certificate store,
which can then be used as cryptographic provider →Windows Cryptographic Provider

Signature Service Signature services are a convenient alternative to storing certificates and key material locally.
The 3-Heights™ PDF Security API can use various different services whose configuration is explained in the fol-
lowing sections of this documentation:

3-Heights™ Signature Creation and Validation Service
SwissSign Digital Signing Service
SwissSign SuisseID Signing Service
QuoVadis sealsign
Swisscom All-in Signing Service

Custom Signature Handler If you want to create the cryptographic part of the signature yourself, i.e. you want to
implement the cryptographic provider yourself, you can register a Custom Signature Handler. This is described
in the respective subsection.

5.5.1 PKCS#11 Provider

PKCS#11 is a standard interface offered by most cryptographic devices such as HSMs, USB Tokens or sometimes
even soft stores (e.g. openCryptoki).

More information on and installation instructions of the PKCS#11 provider of various cryptographic devices can be
found in the separate document TechNotePKCS11.pdf.

Configuration

Provider Property Provider or argument of BeginSession

The provider configuration string has the following syntax:

"‹PathToDll›;‹SlotId›;‹Pin›"

‹PathToDll› is the path to driver library filename, which is provided by the manufacturer of the HSM, UBS
token or smart card. Examples:

The SuisseID USB Tokens use cvP11.dll
The CardOS API from Atos (Siemens) uses siecap11.dll
The IBM 4758 cryptographic coprocessor uses cryptoki.dll
Devices from Aladdin Ltd. use etpkcs11.dll

‹SlotId› is optional, if it is not defined, it is searched for the first slot that contains a running token.

‹Pin› is optional, if it is not defined, the submission for the pin is activated via the pad of the token.

TechNotePKCS11.pdf
TechNotePKCS11.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 38/102

If this is not supported by the token, the following error message is raised when signing: “Private key not
available.”

Example:

Provider = "C:\Windows\system32\siecap11.dll;4;123456"

Note: Some PKCS#11 drivers require the Terminate method to be called.
Otherwise your application might crash upon termination.

The chapter Guidelines for Mass Signing contains important information to optimize performance when signing
multiple documents.

Interoperability Support

The following cryptographic token interface (PKCS#11) products have been successfully tested:

SafeNet Protect Server
SafeNet Luna
SafeNet Authentication Client
IBM OpenCrypTokI
CryptoVision
Siemens CardOS
Utimaco SafeGuard CryptoServer

Selecting a Certificate for Signing

The 3-Heights™ PDF Security API offers different ways to select a certificate. The product tries the first of the follow-
ing selection strategies, for which the required values have been specified by the user.

1. Certificate fingerprint
Property SignerFingerprint

SHA1 fingerprint of the certificate. The fingerprint is 20 bytes long and can be specified in hexadecimal string
representation, e.g. “b5 e4 5c 98 5a 7e 05 ff f4 c6 a3 45 13 48 0b c6 9d e4 5d f5”. In Windows certificate store
this is called “Thumbprint”, if “Thumbprint algorithm” is “sha1”.

2. Certificate Issuer and SerialNumber
Properties Issuer and SerialNumber

Certificate Issuer (e.g. “QV Schweiz CA”), in Windows certificate store this is called “Issued By”.
Serial number of the certificate (hexadecimal string representation, e.g. “4c 05 58 fb”). This is a unique num-
ber assigned to the certificate by its issuer. In Windows certificate store this is the field called “Serial number”
in the certificate’s “Details” tab.

3. Certificate Name and optionally Issuer
Properties Name and Issuer

Common Name of the certificate (e.g. “PDF Tools AG”), in Windows certificate store this is called “Issued To”.
Optional: Certificate Issuer (e.g. “QV Schweiz CA”), in Windows certificate store this is called “Issued By”.

Using PKCS#11 stores with missing issuer certificates

Some PKCS#11 devices contain the signing certificate only. However, in order to embed revocation information it
is important, that the issuer certificates, i.e. the whole trust chain, is available as well.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 39/102

On Windows, missing issuer certificates can be loaded from the Windows certificate store. So the missing certificates
can be installed as follows:

1. Get the certificates of the trust chain. You can download them from the website of your certificate provider or
do the following:
a. Sign a document and open the output in Adobe Acrobat
b. Go to “Signature Properties” and then view the signer’s certificate
c. Select a certificate of the trust chain
d. Export the certificate as “Certificate File” (extension .cer)
e. Do this for all certificates of the trust chain

2. Open the exported files by double clicking on them in the Windows Explorer
3. Click button “Install Certificate...”
4. Select “automatically select the certificate store based on the type of certificate” and finish import

5.5.2 Windows Cryptographic Provider

This provider uses Windows infrastructure to access certificates and to supply cryptographic algorithms. Microsoft
Windows offers two different APIs, the Microsoft CryptoAPI and Cryptography API Next Generation (CNG).

Microsoft CryptoAPI Provides functionality for using cryptographic algorithms and for accessing certificates
stored in the Windows certificate store and other devices, such as USB tokens, with Windows integration.

Microsoft CryptoAPI does not support some new cryptographic algorithms, such as SHA-2.

Cryptography API: Next Generation (CNG) CNG is an update to CryptoAPI. It extends the variety of available
cryptographic algorithms, e.g. by the SHA-2 hashing algorithms. If possible the 3-Heights™ PDF Security API
performs cryptographic calculations with CNG instead of CryptoAPI.

CNG is available only if:

The operating system is at least Windows Vista or Windows Server 2008.
The provider of the signing certificate’s private key, e.g. the USB Token or SmartCard, supports CNG.

If CNG is not available, the CryptoAPI’s cryptographic algorithms are used. In any case, CryptoAPI is used for the
certificate accessing functionalities.

CNG Support of SuisseID: SuisseID supports CNG starting with middleware
version 3.6.2. When using an older middleware version, an upgrade is highly rec-
ommended.

Default Message Digest Algorithm: Since version 4.6.12.0 of the 3-Heights™
PDF Security API, the default message digest algorithm is SHA-2. As a result, sign-
ing will fail if CNG is not available (error message “Private key not available.”). To
use SHA-1, the provider session property MessageDigestAlgorithm can be
used. Note that the use of SHA-1 is strongly discouraged by the cryptographic
community.

Configuration

Provider Property Provider or argument of BeginSession

The provider configuration string has the following syntax:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 40/102

"[‹ProviderType›:]‹Provider›[;‹PIN›]"

The ‹ProviderType› and ‹PIN› are optional. The corresponding drivers must be installed on Windows. If
CNG is available, ‹ProviderType› and ‹Provider› are obsolete and can be omitted.

Optionally, when using an advanced certificate, the pin code (password) can be passed as an additional, semi-
column separated parameter ‹PIN›. This does not work with qualified certificates, because they always require
the pin code to be entered manually and every time.

If ‹Provider› is omitted, the default provider is used. The default provider is suitable for all systems where
CNG is available.

Examples: Use the default provider with no pin.

Provider = ""

Examples: “123456” being the pin code.

Provider = ";123456"

Provider = "Microsoft Base Cryptographic Provider v1.0;123456"

Provider = "PROV_RSA_AES:Microsoft Enhanced RSA and AES Cryptographic" _

 + "Provider;123456"

Certificate Store Property Store

The value for the certificate store depends on the OS. Supported values are: “CA”, “MY” and “ROOT”. For signa-
ture creation the default store “MY” is usually the right choice.

Store Location Property StoreLocation

Either of the following store locations

“Local Machine”
“Current User” (default)

Usually personal certificates are stored in the “Current User” location and company-wide certificates are stored
under “Local Machine”.

The “Current User”’s store is only available, if the user profile has been loaded. This may not be the case in
certain environments such as within an IIS web application or COM+ applications. Use the store of the Local
Machine, if the user profile cannot be loaded. For other services it is sufficient to log it on as the user. Note
that some cryptographic hardware (such as smart cards or USB Tokens) require an interactive environment. As
a result, the private key might not be available in the service session, unless the 3-Heights™ PDF Security API is
run interactively.

Certificates in the store “Local Machine” are available to all users. However, in order to sign a document, you
need access to the signing certificate’s private key. The private key is protected by Windows ACLs and typically
readable for Administrators only. Use the Microsoft Management Console (mmc.exe) in order to grant access
to the private key for other users as follows: Add the Certificates Snap-in for the certificates on Local Machine.
Right-click on the signing certificate, click on “All Tasks” and then “Manage Private Keys...” where you can set the
permissions.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 41/102

Selecting a Certificate for Signing

Within the certificate store selected by Store Location and Certificate Store the selection of the signing certificate
works the same as with the PKCS#11 provider, which is described here: Selecting a Certificate for Signing

Certificates

In order to sign a PDF document, a valid, existing certificate name must be provided and its private key must be
available.

There are various ways to create or obtain a certificate. How this is done is not described in this document. This
document describes the requirements for, and how to use the certificate.

On the Windows operating system certificates can be listed by the Microsoft Management Console (MMC), which
is provided by Windows. In order to see the certificates available on the system, do the following steps:

1. To launch the MMC, go to Start → Run. . .→ type “mmc”, or start a Command Prompt and type “mmc”.

2. Under “File” →“Add/Remove Snap-in”
3. Choose “Certificates” and click the “Add” button
4. In the next window choose to manage certificates for “My user account”
5. Click “Finish”
6. The certificate must be listed under the root “Certificates - Current User”, for example as shown in the screenshot

below:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 42/102

7. Double-click the certificate to open. The certificate name corresponds to the value “Issued to:”.

8. In the tab Detail of the certificate, there is a field named “Key Usage”. This field must contain the value “Digital
Signature”. Additional values are optional, see also screenshot.
You must have the private key that corresponds to this certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 43/102

Qualified Certificates

A qualified certificate can be obtained from a certificate authority (CA). Besides the requirements listed in the previ-
ous chapter it has the additional requirement to contain the key “Authority Information Access” which contains the
information about the OCSP server.

5.5.3 3-Heights™ Signature Creation and Validation Service

The 3-Heights™ Signature Creation and Validation Service provides HTTP protocol based remote access to crypto-
graphic providers such as smartcards, USB tokens, and other cryptographic infrastructure such as HSMs.

Use of the 3-Heights™ Signature Creation and Validation Service provides the following advantages:

1. By means of this service the tokens can be hosted centrally and used by any client computer which has access
to the service.

2. Cryptographic devices that can be used on Windows only can be made accessible to siging processes running
on Non-Windows systems.

3. Cryptographic devices can be made accessible to processes running in non-interactive sessions. Many crypto-
graphic devices must always be used in an interactive session for two reasons.
First, the middleware requires the user to enter the pin interactively to create a qualified electronic signature.
Second, USB tokens and smart cards are managed by Windows such that the device is available only to the user
currently using the computer’s console. Therefore, services, remotely logged in users and applications running
in locked sessions have no access to the device.

Note: that this is a separate product and this chapter describes its usage with
the 3-Heights™ PDF Security API only.

For more information on the 3-Heights™ Signature Creation and Validation Service and installation instructions,
please refer to its separate user manual.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 44/102

Configuration

Provider Property Provider or argument of BeginSession

The provider configuration string has the following syntax:

"http://server.mydomain.com:‹port›/‹token›;‹password›"

Where:

server.mydomain.com is the hostname of the server
‹port› is optional, port of the server.
‹token› the ID of the token.
‹password› password of the token.

Example:

Provider = "http://server.mydomain.com:8080/0001;pass01"

A more detailed description can be found in the user manual of the 3-Heights™ Signature Creation and Validation
Service.

Selecting a Certificate for Signing

Selection of the signing certificate works the same as if the token was used directly: Selecting a Certificate for Sign-
ing.

5.5.4 SwissSign Digital Signing Service

Provider Property Provider or argument of BeginSession

The provider configuration string contains the URL to the service endpoint.

Provider Configuration The provider can be configured using provider session properties.

There are two types of properties:

String Properties:
String properties are set using method SetSessionProperty.
File Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively the
file can be passed in-memory as byte array using the method SetSessionProperty.

Name Type Required Value

Identity String required The identity of your signing certificate.

Example: My Company:Signing Cert
1

DSSProfile String required Must be set to http://dss.swisssign
.net/dss/profile/pades/1.0

http://dss.swisssign.net/dss/profile/pades/1.0
http://dss.swisssign.net/dss/profile/pades/1.0

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 45/102

SSLClientCertificate File required SSL client certificate in PKCS#12 Format
(.p12, .pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private
key.

SSLClientCertificatePassword String optional Password to decrypt the private key of the
SLL client certificate.

SSLServerCertificate File recommended Certificate of the server or its issuer (CA)
certificate in DER Format (.der, .cer)

Note: If this property is not set, the server
certificate is not verified at all!

RequestID String recommended Any string that can be used to track the
request.

Example: An UUID like AE57F021-C0EB-
4AE0-8E5E-67FB93E5BC7F

Signature Configuration The signature can be customized using standard properties of the 3-Heights™ PDF Se-
curity API.

Description Required Value Setting

Common Name required The name of the signer must be
set5.

Property Name.

Time-stamp optional Use the value
"urn:ietf:rfc:3161" to
embed a Time-stamp.

Property TimeStampURL

Revocation Info optional To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

Visual Appearance optional See separate chapter How to
Create a Visual Appearance of a
Signature.

Proxy Configuration If a proxy is used for the connection to the service, see chapter How to Use a Proxy for more
information.

5.5.5 SwissSign SuisseID Signing Service

In order to use the SuisseID Signing Service, please contact Swiss Post Solutions AG (suisseid@post.ch) to ob-
tain access credentials. Prior to invoking the SuisseID Signing Service, user authentication via the SuisseID Identity

5 This parameter is not used for certificate selection, but for the signature appearance and signature description in the PDF only.

mailto:suisseid@post.ch

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 46/102

Provider (IDP) is a pre-requisite. So the calling application must integrate via SAML (e.g. SuisseID SDK) with the
SuisseID Identity Provider. The IDP issues SAML tokens upon successful user authentication.

Note: The name of the signature should be the signer’s name (e.g. “‹given-

name› ‹surname›”). The signer’s name can be retrieved for the SAML token as
the IDP provides this as qualified attributes (yellowid verified).

Provider Property Provider or argument of BeginSession

The provider configuration string contains the URL to the service endpoint.

Provider Configuration The provider can be configured using provider session properties.

There are two types of properties:

String Properties:
String properties are set using method SetSessionProperty.
File Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively the
file can be passed in-memory as byte array using the method SetSessionProperty.

Name Type Required Value

SAMLToken File required SAML token issued by the SuisseID Identity
Provider (IDP).

Example: C:\temp\my-saml.xml

Note: The SAML token received from the IDP
is a signed XML. It must be treated as binary
data and not be modified in any way. For
example, the token should not be read into a
string or XML object and re-serialized.

SSLClientCertificate File required SSL client certificate in PKCS#12 Format
(.p12, .pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private
key.

SSLClientCertificatePassword String optional Password to decrypt the private key of the
SLL client certificate.

SSLServerCertificate File recommended Certificate of the server or its issuer (CA)
certificate in DER Format (.der, .cer)

Note: If this property is not set, the server
certificate is not verified at all!

Signature Configuration The signature can be customized using standard properties.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 47/102

Description Required Value Setting

Common Name required The name of the signer must be
set6.

Property Name.

Time-stamp optional Use the value
"http://tsa.swiss-

sign.net" to embed a
Time-stamp.

Property TimeStampURL

Revocation Info optional To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

Visual Appearance optional See separate chapter How to
Create a Visual Appearance of a
Signature.

Proxy Configuration If a proxy is used for the connection to the service, see chapter How to Use a Proxy for more
information.

5.5.6 QuoVadis sealsign

Provider Property Provider or argument of BeginSession

The provider configuration string contains the URL to the QuoVadis sealsign service.

Demo service:
"https://services.sealsignportal.com/sealsign/ws/BrokerClient"

Productive service:
"https://qvchsvsws.quovadisglobal.com/sealsign/ws/BrokerClient"

Provider Configuration The provider can be configured using provider session properties that can be set using
the method SetSessionProperty.

Name Type Required Value

Identity String required The account ID is the unique name of the account
specified on the server.

Example: Rigora

Profile String required The profile identifies the signature specifications by a
unique name.

Example: Default

6 This parameter is not used for certificate selection, but for the signature appearance and signature description in the PDF only.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 48/102

secret String required The secret is the password which secures the access
to the account.

Example: NeE=EKEd33FeCk70

clientId String required A client ID can be used to help separating access and
creating better statistics. If specified in the account
configuration it is necessary to provide this value.

Example: 3949-4929-3179-2818

pin String required The PIN code is required to activate the signing key.
Example: 123456

MessageDigestAlgorithm String optional The message digest algorithm to use.

Default: SHA-256

Alternatives: SHA-1, SHA-384, SHA-512,
RIPEMD-160, RIPEMD-256

Signature Configuration The signature can be customized using standard properties.

Description Required Value Setting

Common Name required The name of the signer must be
set7.

Property Name.

Time-stamp - Not available.

Revocation Info optional To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

Visual Appearance optional See separate chapter How to
Create a Visual Appearance of a
Signature.

Proxy Configuration If a proxy is used for the connection to the service, see chapter How to Use a Proxy for more
information.

5.5.7 Swisscom All-in Signing Service

General Properties

To use the signature service, the following general properties have to be set:

7 This parameter is not used for certificate selection, but for the signature appearance and signature description in the PDF only.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 49/102

Description Required Value Setting

Common Name required Name of the signer8. Property Name

Provider required The service endpoint URL of the
REST service.

Example:
https://ais.swisscom.com

/AIS-Server/rs/v1.0/sign

Property Provider

Time-stamp optional Use the value
"urn:ietf:rfc:3161" to
embed a Time-stamp.

Property TimeStampURL

Revocation Info optional To embed OCSP responses Property EmbedRevocationInfo

If a proxy is used for the connection to the service, see chapter How to Use a Proxy for more information.

Provider Session Properties

In addition to the general properties, a few provider specific session properties have to be set.

There are two types of properties:

String Properties:
String properties are set using method SetSessionProperty.
File Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively the file
can be passed in-memory as byte array using the method SetSessionProperty.

Name Type Required Value

DSSProfile String required Must be set to
http://ais.swisscom.ch/1.0

SSLClientCertificate File required SSL client certificate in PKCS#12 Format (.p12,
.pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private key.

SSLClientCertificatePassword String optional Password to decrypt the private key of the SLL
client certificate.

8 This parameter is not used for certificate selection, but for the signature appearance and signature description in the PDF only.

https://ais.swisscom.com/AIS-Server/rs/v1.0/sign
https://ais.swisscom.com/AIS-Server/rs/v1.0/sign
http://ais.swisscom.ch/1.0

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 50/102

SSLServerCertificate File recommended Certificate of the server or its issuer (CA)
certificate in DER Format (.der, .cer)

Note: If this property is not set, the server
certificate is not verified at all!

Identity String required The Claimed Identity string as provided by
Swisscom:

‹customer name›:‹key identity›

RequestID String recommended Any string that can be used to track the request.

Example: An UUID like AE57F021-C0EB-
4AE0-8E5E-67FB93E5BC7F

On-Demand Certificates

To request an on-demand certificate, the following additional property has to be set:

Name Type Required Value

SwisscomAllInOnDemandDN String required The requested distinguished name.

Example: cn=Hans Muster,o=ACME,c=CH

Step-Up Authorization using Mobile-ID

To use the step-up authorization, the following additional properties have to be set:

Name Type Required Value

SwisscomAllInMSISDN String required Mobile phone number.

Example: +41798765432

SwisscomAllInMessage String required The message to be displayed on the mobile phone.

Example: Pipapo halolu.

SwisscomAllInLanguage String required The language of the message.

Example: DE

Those properties have to comply with the Swisscom Mobile-ID specification.

5.5.8 Custom Signature Handler

The 3-Heights™ PDF Security API provides the capability of replacing the default built-in signature handler with
a custom signature handler. A custom signature handler has full control over the creation and validation of the
cryptographic part of a signature. This makes it possible to implement proprietary signing algorithms.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 51/102

The custom signature handler must implement a C interface as described in the header file pdfsignaturehan-
dler.h. It can be registered using a call toPdfRegisterSignatureHandler()during the initialization of the
3-Heights™ PDF Security API. When using a custom signature handler, it is important that this call be made before
using the API for signing.

This allows for treating the PDF and signature technologies separately and also provides an easy way to replace a
signature handler.

5.6 How to Create Digital Signatures

This chapter describes the steps that are required to create different types of digital signatures. A good introductory
example can be found in the chapter How to Create Electronic Signatures.

5.6.1 How to Sign a PDF Document

As we saw in the chapter How to Create Electronic Signatures, the process steps to add a signature are as shown in
the graphic below:

Open AddSignature SaveAs Close

3-Heights™ PDF Security API

PDF Certificate

Signed PDF

1. A PDF input-document is opened
2. A signature is created and added using a certificate
3. A new, signed PDF output-document is created
4. The input-document is closed

5.6.2 How to Create a Preview of a Signed Document

The 3-Heights™ PDF Security API provides the possibility to create a PDF document with a visual appearance of a
digital signature without actually signing the document. This document can be used for a preview. If the preview
is accepted, the document can be signed without visually change the document. The process steps to prepare a
document for signing and actually sign it upon approval of the user are as shown in the graphic below:

Open AddPreparedSignature

3-Heights™ PDF Security API

SaveAs SignPreparedSignature Close SaveAs

User accepts
preview

PDF for preview Signed PDF

PDF Certificate

1. A PDF input-document is opened.
2. A digital signature is prepared and a visual appearance is generated.
3. A new preview-PDF output-document is created, this document does not contain a digital signature, however

it contains a placeholder for a signature.
4. If the preview-PDF is approved, the document is signed using a certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 52/102

5. A new, signed PDF output-document is created, which looks identical to the preview-PDF.
6. The input-document is closed.

5.6.3 How to Create a PAdES LTV Signature

In order to create a PAdES LTV signature, the following is required:

1. An advanced or qualified signing certificate.
For requirements and preparation steps see the sample in chapter How to Create Electronic Signatures. Make
sure the store of your cryptographic provider contains all certificates of the trust chain, including the root cer-
tificate.

2. Embed revocation information.
Set the property EmbedRevocationInfo to True, which is the default.

3. Add a Time-stamp.
Use the property TimeStampURL.

4. Proper error handling.
A proper error handling is crucial in order to ensure the creation of correctly signed documents. The output
document was signed successfully, if and only if the method SaveAs returns true.

5.6.4 How to Apply Multiple Signatures

Multiple Signatures can be applied to a PDF document. One signature must be applied at the time. Signing a signed
file does not break existing signatures, because the 3-Heights™ PDF Security API uses an incremental update.

Note that encrypted files cannot be signed multiple times. Signing a linearized file renders the linearization infor-
mation unusable.

Dim Document As New PDFSECUREAPILib.PdfSecure

Document.Open "input.pdf", ""

Dim Signature1 As New PDFSECUREAPILib.PdfSignature

Signature1.Name = "First Signer"

Signature1.Provider = "cvp11.dll;0;secret-pin1"

Document.AddSignature Signature1

Document.SaveAs "tmp.pdf"

Document.Close

Document.Open "tmp.pdf", ""

Dim Signature2 As New PDFSECUREAPILib.PdfSignature

Signature2.Name = "Second Signer"

Signature2.Provider = "cvp11.dll;1;secret-pin2"

Document.AddSignature Signature2

Document.SaveAs "output.pdf"

Document.Close

5.6.5 How to Create a Time-stamp Signature

For a Time-stamp signature no local signing certificate is required. Instead the Time-stamp signature requested
from the Time-stamp Authority (TSA) is embedded into the document.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 53/102

Example: Create a Time-stamp signature using the method AddTimeStampSignature.

Dim Document As New PDFSECUREAPILib.PdfSecure

Document.Open "input.pdf", ""

Dim Signature As New PDFSECUREAPILib.PdfSignature

Signature.Provider = "cvp11.dll"

Signature.TimeStampURL = "http://server.mydomain.com:80/tsa"

Document.AddTimeStampSignature Signature

Document.SaveAs "output.pdf"

Document.Close

A Cryptographic Provider is required on non-Windows systems only.

5.6.6 How to Create a Visual Appearance of a Signature

Each signature may have a visual appearance on a page of the document. The visual appearance is optional and
has no effect on the validity of the signature. Because of this and because a visual appearance may cover important
content of the page, the 3-Heights™ PDF Security API creates invisible signatures by default.

In order to create a visual appearance, a non-empty signature rectangle must be set. For example, by setting the
property Rect to [10, 10, 210, 60] the following appearance is created:

Different properties of the visual appearance can be specified.

Page and Position See properties PageNo and Rect.

Color See properties FillColor and StrokeColor.

Line Width The line width of the background rectangle, see property LineWidth.

Text Two text fragments can be set using two different fonts and font sizes, see properties Text1, Text2, Fon-
tName1, FontName2, FontSize1, and FontSize2.

Background image See property ImageFileName.

5.6.7 Guidelines for Mass Signing

This section provides some guidelines for mass signing using the 3-Heights™ PDF Security API.

Keep the session to the security device open for multiple sign operations

Creating and ending the session to the security device is a complex operation. By re-using the session for multiple
sign operations, performance can be improved:

1. Create a PdfSecure object.
2. Open the session to the provider using BeginSession.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 54/102

3. Use the PdfSecure object to sign multiple documents.
4. Close the session to the provider using EndSession.
5. Dispose of the PdfSecure object.

Signing concurrently using multiple threads

The 3-Heights™ PDF Security API is thread-safe. Each PdfSecure object should be used in one thread at the time
only. It is recommended that each thread has a separate PdfSecure object.

The performance improvement when signing concurrently using multiple threads depends mainly on the security
device used. Typically the improvement is large for HSMs and small for USB Tokens.

Thread safety with a PKCS#11 provider

The PKCS#11 standard specifies, that “an application can specify that it will be accessing the library concurrently
from multiple threads, and the library must [. . .] ensure proper thread-safe behavior.” However, some PKCS#11
provider (middleware) implementations are not thread-safe. For this reason, the 3-Heights™ PDF Security API syn-
chronizes all access to the same provider (middleware and slot id).

If your middleware is thread-safe, you can enable full parallel usage of the cryptographic device by setting the
session property "LOCKING_OK" to the value "True" using the method SetSessionProperty.

Example: Enable parallel access to the cryptographic device.

doc.SetSessionPropertyString("LOCKING_OK", "true");

5.6.8 Miscellaneous

Caching of CRLs, OCSP, and Time-stamp Reponses

In order to improve the speed when mass signing, the 3-Heights™ PDF Security API provides a caching algorithm
to store CRL (Certificate Revocation List), OCSP (Online Certificate Status Protocol), TSP (Time-stamp Protocol) and
data from signature services. This data is usually valid over period of time that is defined by the protocol, which
is normally at least 24 hours. Caching improves the speed, because there are situations when the server does not
need to be contacted for every digital signature.

The following caches are stored automatically by the 3-Heights™ PDF Security API at the indicated locations within
the Cache Directory:

OCSP responses <CacheDirectory>/OCSP Responses/server-hash.der

CRL <CacheDirectory>/CLRs/server.der

Time stamp responses9 <CacheDirectory>/Time Stamps/server.der

Service data <CacheDirectory>/Signature Sizes/hash.bin

9 The sizes of the Time-stamp responses are cached only. Cached Time stamp responses cannot be embedded but used for the computation of
the signature length only.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 55/102

The caches can be cleared by deleting the files. Usage of the caches can be deactivated by setting the NoCache
flag. The files are automatically updated if the current date and time exceeds the “next update” field in the OCSP or
CRL response respectively or the cached data was downloaded more than 24 hours ago.

How to Use a Proxy

The 3-Heights™ PDF Security API can use a proxy server for all communication to remote servers, e.g. to download
CRL or for communication to a signature service. The proxy server can be configured using the provider session
property Proxy. The property’s value must be a string with the following syntax:

http[s]://[‹user›[:‹password›]@‹host›[:‹port›]

Where:

http / https: Protocol for connection to proxy.
‹user›:‹password› (optional): Credentials for connection to proxy (basic authorization).
‹host›: Hostname of proxy.
‹port›: Port for connection to proxy.

For SSL connections, e.g. to a signature service, the proxy must allow the HTTP CONNECT request to the signature
service.

Example: Configuration of a proxy server that is called “myproxy” and accepts HTTP connections on port 8080.

doc.SetSessionPropertyString "Proxy" "http://myproxy:8080"

Configuration of Proxy Server and Firewall

For the application of a Time-stamp or online verification of certificates, the signature software requires access to
the server of the certificates’ issuer (e.g. http://ocsp.quovadisglobal.com or http://platinum
-qualified-g2.ocsp.swisssign.net/) via HTTP. The URL for verification is stored in the certificate; the URL
for Time-stamp services is provided by the issuer. In case these functions are not configured, no access is required.

In organizations where a web proxy is used, it must be ensured that the required MIME types are supported. These
are:

OCSP

application/ocsp-request

application/ocsp-response

Time-stamp

application/timestamp-query

application/timestamp-reply

Signature services

Signature service specific MIME types.

5.7 How to Validate Digital Signatures

5.7.1 Validation of a Qualified Electronic Signature

There are basically three items that need to be validated:

1. Trust Chain
2. Revocation Information (optional)
3. Time-stamp (optional)

http://ocsp.quovadisglobal.com
http://platinum-qualified-g2.ocsp.swisssign.net/
http://platinum-qualified-g2.ocsp.swisssign.net/

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 56/102

Validation can be in different ways, e.g. Adobe Acrobat, from which the screenshots below are taken.

Trust Chain

Before the trust chain can be validated, ensure the root certificate is trusted. There are different ways to add a
certificate as trusted root certificate. The best way on Windows is this:

1. Retrieve a copy of the certificate containing a public key. This can be done be requesting it from the issuer (your
CA) or by exporting it from an existing signature to a file (CertExchange.cer). Ensure you are not installing
a malicious certificate!

2. Add the certificate to the trusted root certificates. If you have the certificate available as file, you can simply
double-click it to install it.

After that you can validate the signature, e.g. by open the PDF document in Adobe Acrobat, right-click the signature
and select “Validate”, then select “Properties” and select the tab “Trust”. There the certificate should be trusted to
“sign documents or data”.

Revocation Information

An OCSP response or CRL must be available. This is shown in the tab “Revocation”. The details should mention that
“the certificate is considered valid”.

The presence of revocation information must be checked for the signing certificate and all certificates of its trust
chain except for the root certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 57/102

Time-stamp

The signature can optionally contain a Time-stamp. This is shown in the tab “Date/Time”. The certificate of the Time-
stamp server must also be trusted, i.e. its trust chain should be validated as described in the section Trust Chain
above.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 58/102

5.7.2 Validation of a PAdES LTV Signature

Verifying if a signature conforms to the PAdES LTV standard is similar to validating a Qualified Electronic Signature.

The following must be checked:

1. Trust Chain
2. Revocation information
3. Time-stamp
4. LTV expiration date
5. Other PAdES Requirements

Trust Chain

Trust chain validation works the same as for validating Qualified Electronic Signatures.

Revocation information

Revocation information (OCPS response or CRL) must be valid and embedded into the signature. In the details,
verify that the revocation check was performed using data that was “was embedded in the signature”. Revocation
information that “was contained in the local cache” or “was requested online” is not embedded into the signature
and does not meet PAdES LTV requirements.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 59/102

Time-stamp

A Time-stamp must be embedded and validated as described for validating Qualified Electronic Signatures. If a
document contains multiple Time-stamps, all but the latest one must contain revocation information.

LTV expiration date

The long term validation ability expires with the expiration of the signing certificate of the latest Time-stamp.

The life-time of the protection can be further extended beyond the life-of the last Time-stamp applied by adding
further DSS information to validate the previous last Time-stamp along with a new Time-stamp.

Other PAdES Requirements

Certain other PAdES requirements, such as requirements on the PKCS#7 CMS, cannot be validated using Adobe
Acrobat. For this, use the 3-Heights™ PDF Security API for validation.

See method ValidateSignature of the PdfSecure Interface.

5.8 Advanced Guide

5.8.1 How to Use the in-Memory Functions

The 3-Heights™ PDF Security API always requires two PDF documents. A PDF input document from which it reads
and a PDF output document to where the result is saved.

To open from and save to files, the methods Open and SaveAs are used. These two methods are described in the
chapters How to read an encrypted PDF and How to encrypt a PDF.

Instead of accessing files, the documents can be read from and written to in-memory. The corresponding methods
are OpenMem and SaveInMemory.

Input-File

Decrypt

Memory

Open

OpenMem

Encrypt

SaveAs

SaveInMemory

Memory

Output-File

3-Heights™ PDF Security API

Once the output document is saved to memory using SaveInMemory, that memory block can be accessed using
the method GetPdf.

A call sequence to create a first PDFSecure object that opens a PDF from file and stores its output in-memory and
then a second object, which reads that in-memory document and saves it back to a file looks like this:

PDFSecure1.Open(InputFile)

PDFSecure1.SaveInMemory()

PDFSecure1.Close()

PDFSecure2.OpenMem(PDFSecure1.GetPdf())

PDFSecure2.SaveAs(OutputFile)

PDFSecure2.Close()

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 60/102

This call sequence of course does not make much sense. It’s merely used to illustrate how to use of the in-memory
functions. In a real application, the in-memory document is read from another application or a database.

5.9 Stamping
The 3-Heights™ PDF Security API can add new content such as text or images to the output document. This process
is called stamping. The content of previously applied stamps can be modified.

The 3-Heights™ PDF Security API can sign and stamp documents in one step. In order to not invalidate existing
signatures, stamps can be modified and created using stamp annotations with an incremental update to the input
document. An example of this can be seen in the screenshot below.

5.9.1 Stamp File Syntax

Stamps are described with XML data that is passed to the 3-Heights™ PDF Security API either as file using the method
AddStampsor as memory block using the methodAddStampsMem. A stamp file can contain one or more stamps.

For each Tag there is a separate table below, where the Attribute-Names and the Attribute-Values are
described.

<pdfstamp>

The Root Tag for the PDF stamp XML file. The tag may contain multiple stamps.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 61/102

xmlns="http://www.pdf-tools.com/pdfstamp/" (required)
XML namespace used for all stamp elements.

Stamp

A stamp is defined by a <stamp> tag that specifies the stamp’s size, position, and pages to which it is applied to.
The stamp’s appearance is defined by the content operators contained therein.

<stamp> Add a Stamp

page="‹page_set›" (required)
The pages to which the stamp is to be applied. The syntax is as follows:

‹page_set› = ‹page_range› ["," ‹page_range›]

‹page_range› = ‹n› | ‹n1›-‹n2› | first | last | not_first | not_last |

even | odd | all

Where:

‹n›, ‹n1›, ‹n2›: Page number. 1 defines the first page.
first: First page
last: Last page
odd: Only odd pages including first page and last page in case it is odd
even: Only even pages including last page in case it is even
all: All pages
not_first: First page excluded
not_last: Last page excluded

Example: page="1,2-4,6,10,last"

name="‹identifier›" (optional)
Unique identifier of the stamp, must be less than 127 characters, see section Modify content of existing
stamps for more information.

relativepos="‹x› ‹y›" (required)
Relative position‹x› and‹y› of the stamp with regards to the page. Positive values of‹x› and‹y› define
the distances of the stamp to the left and lower, negative values to the right and upper page boundary
respectively. The units of the values are PDF units of 1/72 inch. The positioning algorithm works best for
stamp rotation angles that are a multiple of 90° (see rotate attribute).

‹x› or ‹y› are ignored, if respective align is used.

Examples:

1. relativepos=" 10 -10" places the stamp in the upper left corner of the page.
2. relativepos="-10 -10" places the stamp in the upper right corner of the page.
3. relativepos=" 10 10" places the stamp in the lower left corner of the page.
4. relativepos="-10 10" places the stamp in the lower right corner of the page.

align="‹alignment›" (optional)
Align the stamp with the page. Allowed values for ‹alignment› are:

center: position horizontally at center of page, the ‹x› value of relativepos is ignored.
middle: position vertically at middle of page, the ‹y› value of relativepos is ignored.

Examples:

1. <stamp position="0 4" align="center">

Centers the stamp horizontally and 4 pt away from the bottom of the page.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 62/102

2. <stamp position="-4 0" align="middle">

Centers the stamp vertically and 4 pt away from the right edge of the page.

size="‹w› ‹h›" (optional)
The width and height of the stamp. The stamp’s content will be clipped to this rectangle. If this is not speci-
fied or either ‹w› or ‹h› are zero, the respective size is calculated to fit content.

rotate="‹angle›" (optional)
Rotation of the stamp in degrees clockwise.

scale="‹scale_set›" (optional)
Modify scale of stamp. Allowed values for ‹scale_set› are:

relToA4: Scale the stamp relative to the page size. For example, make stamp half as large on a A5 and
twice as large on a A3 page as specified.

autoorientation="‹b›" (optional)
Allowed values for ‹b› are:

false (default): Always position stamps as defined by stamp attributes.
true: Detect orientation (portrait and landscape) of page automatically and treat landscape page as
90° rotated portrait. Useful to apply stamps to “long” or “short” edge of page.

alpha="‹ca›" (optional)
The opacity of the stamp as a whole. 1.0 for fully opaque, 0.0 for fully transparent.

Default: 1.0

The PDF/A-1 standard does not allow transparency. Therefore, for PDF/A-1 conforming input files you must
not set alpha to a value other than 1.0.

type="‹type›" (optional)
The type of the stamp

annotation (default): The stamp is added to the page as a stamp annotation. Creating or modifying
stamps of this type will not invalidate existing signatures of the input document. While it is not easily
possible to remove stamps of this type, it is possible to print a document without annotations.
foreground10: The stamp is added to the foreground of the page content. Creating or modifying
stamps of this type will invalidate all existing signatures of the input document. It is not easily possible
to remove stamps of this type nor can the document be printed without them.
background: The stamp is added to the background of the page content. Creating or modifying
stamps of this type will invalidate all existing signatures of the input document. It is not easily possible
to remove stamps of this type nor can the document be printed without them.
Note that stamps placed this way can be hidden when pages contain a non-transparent background. In
these cases, you may rather want to put the stamps in the foreground, but apply alpha transparency to
achieve a result with existing content not covered completely.

Coordinates

All coordinate and size values are in PDF units of 1/72 inch (A4 = 595 x 842 points, letter = 612 x 792 points). The
origin of the coordinate system is generally the lower left corner of the reference object. For stamps the reference
object is the page, for content operators the reference is the stamp rectangle.

10 Up to version 4.5.6.0 of the 3-Heights™ PDF Security API this type was called content.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 63/102

Modify content of existing stamps

Setting the name attribute of a stamp allows the stamp’s content to be replaced later. If an existing stamp with the
same name exists in the input file, its content is replacedm as shown in example Example 2: Modify “Simple Stamp”.
Note that when updating a stamp, its position and size remains. Therefore, if you intend to update a stamp, make
sure to create it specifying a size that is sufficiently large.

When modifying a stamp, only its content may be changed. All attributes of <stamp> must remain unchanged, in
particular page and size.

Stamp content

Each stamp contains a number of content operators that define the appearance (i.e. the content) of the stamp. The
content operators are applied in the order they appear within <stamp>where each content element is drawn over
all previous elements (i.e. increasing z-order).

Text

Stamp text is defined by <text>. All character data (text) therein is stamped:

<text font="Arial" size="12">Some text</text>

Text fragments can be formatted differently by enclosing them in a element. All text formatting attributes
are inherited from the parent element and can be overriden in :

<text font="Arial" size="12" >Text with a <span

 font="Arial,Bold">bold and a <span

 color="1 0 0 ">red word.</text>

Note that all character data in <text> is added, including whitespace such as spaces and line breaks.

<text> Add Text

All text formatting attributes attributes described in can also be specified in <text>.

position="‹x› ‹y›" (optional)
The position in points within the stamp, e.g. "200 300".

With the default values for align (align="left top"), position defines the top left corner of the
text11.

align="‹xalign› ‹yalign›" (optional)
Align text at position or stamp, if position is not set.

Values for horizontal alignment ‹xalign›:

left: align to the left (default)
center: center text
right: align to the right

Values for vertical alignment ‹yalign›:

top: align to the top (default)
middle: align to the middle
bottom: align to the bottom

11 Prior to version 4.4.31.0 of the 3-Heights™ PDF Security API,position specified the origin of the first character. When upgrading, add 0.75*size
to the value of ‹y›.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 64/102

Examples:

1. <text align="left bottom" ...>

positions the text in the left bottom corner of the stamp.
2. <text align="left bottom" position="10 10" ...>:

align left bottom corner of text to position "10 10".

format="‹b›" (optional)
Whether or not to enable formatting of variable text. Allowed values are true and false (default). See
chapter Variable Text for documentation.

text="‹text›" (required)
The text that is to be written, e.g. text="Hello World"

Multi-line text is supported by using the newline character
, e.g. text="1st line&\#10;2nd
line".

 Define Formatting of Text

Example: <text font="Arial" size="8">Note: Text
can be formatted using .</text>

color="‹r› ‹g› ‹b›" (optional)
The color as RGB value, where all values must be in the range from 0 to 1, e.g:

Red: "1 0 0"
Green: "0 1 0"
Yellow: "1 1 0"
Black: "0 0 0" (default)
Gray: "0.5 0.5 0.5"

font="‹name›" (required)
The TrueType name of the font, e.g. "Arial" or "Times New Roman,Bold", or a complete path to the font,
e.g. C:/Windows/Fonts/Arial.ttf. If the name is used, the respective font must be available in any of
the font directories (see chapter Fonts).

size="‹n›" (required)
The font size in points, e.g. 12. If set to 0, the size is chosen such that text fits stamp size (not allowed if operator
is within transformation operator).

fontencoding="‹encoding›" (optional)
This attribute is relevant only, if the stamp will be modified later (see section Modify content of existing stamps).

The PDF/A standard demands that all used fonts must be embedded in the PDF. Since fonts with many glyphs
can be very large in size (>20MB), unused glyphs are removed prior to embedding. This process is called subset-
ting. The attribute fontencoding controls the subsetting:

Unicode: (default) Only the glyphs used by the stamp are embedded. If the stamp is modified, a new font
that includes the new glyph set has to be re-embedded. This setting is recommended for stamps that will
not be modified later.
WinAnsi: All glyphs required for WinAnsiEncoding are embedded. Hence the text’s characters are be lim-
ited to this character set. If the content of the stamp is updated, fonts using WinAnsi will be reused.

For example, embedding the font "Arial" with Unicode and approximately ten glyphs uses 20KB while "Arial"
with WinAnsi (approximately 200 glyphs) uses 53KB of font data.

mode="‹modes›" (optional)

The attribute mode controls the rendering mode of the text.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 65/102

Allowed values are following or a combination thereof:

fill: (default) The text is filled.
stroke: The text’s outlines are stroked. The width of the stroke is specified by linewidth.

linewidth="‹f›" (optional)
Set the line width in points, e.g. 1.0 (default).

decoration="‹decorations›" (optional)

The attribute decoration can be used to add any of the following text decorations:

underline: A small line is drawn below the text.

<link> Create Link

For all text contained within this element, a link is created. Links work best for stamps with
type="foreground", but are possible for other types as well.

Example: <text font="Arial" size="8">© <link uri="https://www.pdf-tools.com/"

>PDF Tools AG</link> – Premium PDF Technology</text>

uri="‹uri›" (required)
The URI which is the link target.

<filltext> Obsolete tag.
Starting with version 4.9.1.0 of the 3-Heights™ PDF Security API the element <filltext . . .> was rendered
obsolete by <text . . .>.

<stroketext> Obsolete tag.
Starting with version 4.9.1.0 of the 3-Heights™ PDF Security API the element <stroketext . . .>was rendered
obsolete by <text mode="stroke" . . .>.

Variable Text

Variable text such as the current date or the number of pages can be stamped in <text>. The feature must be
activated by setting the format="‹b›" attribute to true.

Variable text elements are of the following form:

"{‹value›:‹format›}"

The ‹value› defines the type of value. ‹format› is optional and specifies how the value should be formatted.
To stamp the { character, it must be escaped by duplicating it: {{.

Date Values

‹value› The following values are supported:

UTC: the current time in UTC.
LocalTime: the current local time

‹format› The default format is a locale-dependent date and time representation. Alternatively a format
string as accepted by strftime() can be specified.

Example: Stamp the current local time with the default format.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 66/102

Text Result

Received: {LocalTime} Received: Thu Aug 23 14:55:02 2001

Example: Stamp the current date.

Text Result

Date: {LocalTime:%d. %m. %Y} Date: 23. 8. 2011

Number Values

‹value› The following values are supported:

PageCount: the number of pages in the document.

‹format› Optionally a format string as accepted by printf() can be specified.

Example: Stamp the page count.

Text Result

{{PageCount}} = {PageCount} {PageCount} = 10

Images and Geometric Shapes

<image> Add Image

rect="‹x› ‹y› ‹w› ‹h›" (required)
The rectangle where the image is to be placed at. ‹x› and ‹y› correspond the the location (lower left
corner), and ‹w› and ‹h› to width and height of the image, e.g. 100 200 50 50

filename="‹path›" (required)
The path to the file, e.g. C:/pictures/image1.jpg

compression="‹value›" (optional)
By default bi-tonal images are compressed with CCITTFax, continuous tone images with DCT and indexed
images with Flate. To explicitly set the compression use this property.

Supported values are:

Flate: Flate encoded
DCT: DCT (JPEG) encoded
CCITTFax: CCITT G4 encoded

<fillrectangle> Add Filled Rectangle

rect="‹x› ‹y› ‹w› ‹h›" (optional)
The coordinates and size of the rectangle. If this value is omitted, the rectangle fills the entire area of the
stamp.

color="‹r› ‹g› ‹b›" (optional)
The fill color of the rectangle. The color as RGB value, where all values must be in the range from 0.0 to 1.0.
The default is black: "0 0 0"

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 67/102

alpha="‹ca›" (optional)
The opacity of the rectangle. 1.0 for fully opaque, 0.0 for fully transparent.

Default: 1.0

The PDF/A-1 standard does not allow transparency. Therefore, for PDF/A-1 conforming input files you must
not set alpha to a value other than 1.0.

<strokerectangle> Add Stroked Rectangle

linewidth="‹f›" (optional)
Set the line width in points, e.g. 1.0 (default).

For the following parameter descriptions see <fillrectangle>.

rect="‹x› ‹y› ‹w› ‹h›"

color="‹r› ‹g› ‹b›"

alpha="‹ca›"

Transformations

The transform operators apply to stamp content defined within the tag. For example, this can be used to rotate
<text> or <image>.

<rotate> Rotation

angle="‹n›" (required)
Rotate by ‹n› degrees counter-clockwise, e.g 90

origin="‹x› ‹y›" (required)
Set the origin of the rotation in points, e.g 100 100

<translate> Coordinate Translation

offset="‹x› ‹y›" (required)
The ‹x› (horizontal) and ‹y› (vertical) offset in points. A translation by x y is equal to a transformation by
1 0 0 1 x y.

<transform> Coordinate Transformation

matrix="‹a› ‹b› ‹c› ‹d› ‹x› ‹y›" (required)
The transformation matrix to scale, rotate, skew, or translate.

Examples:

1. Identity: 1 0 0 1 0 0
2. Scale by factor 2 (double size): 2 0 0 2 0 0
3. Translate 50 points to left, 200 up: 1 0 0 1 50 200
4. Rotate by x: cos(x) sin(x) -sin(x) cos(x) 0 0

For 90° (= π/2) that is: 0 1 -1 0 0 0

5.9.2 Examples

Example 1: Simple Stamps

Apply two simple stamps.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 68/102

First Stamp: Stamp text “Simple Stamp” on in upper left corner of all pages.

Second Stamp: Stamp image lena.tif rotated by 90° and located at the center of the top corner of the first
page.

example1.xml:

<?xml version="1.0" encoding="utf-8"?>

<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp page="all" name="simple stamp"

 relativepos="10 -10" size="160 0">

 <text align="left middle"

 font="Arial" size="20" fontencoding="WinAnsi"

 text="Simple Stamp" />

 </stamp>

 <stamp page="first"

 relativepos="0 -10" align="center">

 <rotate angle="90" origin="50 50">

 <image rect="0 0 100 100"

 filename="C:\images\lena.tif"/>

 </rotate>

 </stamp>

</pdfstamp>

Result of example1.xml.

Example 2: Modify “Simple Stamp”

Modify "simple stamp" from Example 1: Simple Stamps.

The stamp "simple stamp" can be modified by applying the following stamp XML file to the output file of the
example above. Note that since position and size of the stamp remain unchanged, the respective attributes can be
omitted.

The second stamp applied in Example 1 is not modified.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 69/102

example2.xml:

<?xml version="1.0" encoding="utf-8"?>

<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp name="simple stamp">

 <text align="left middle"

 color="1 0 0"

 font="Arial" size="20" fontencoding="WinAnsi"

 text="Modified Stamp" />

 </stamp>

</pdfstamp>

Result of example2.xml.

Example 3: Add watermark text diagonally across pages

The stamp is specified for an A4 page, which is 595 by 842 points. On each page the stamp is applied to, it is scaled
(scale="relToA4") and rotated (autoorientation="true") to fit the page.

example3.xml:

<?xml version="1.0" encoding="utf-8"?>

<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp page="all" size="595 842"

 align="center middle"

 scale="relToA4" autoorientation="true"

 type="foreground">

 <rotate angle="55" origin="298 421">

 <text mode="stroke"

 align="center middle" position="298 421"

 font="Arial,Bold" size="60"

 text="WATERMARK TEXT"/>

 </rotate>

 </stamp>

</pdfstamp>

Result of example3.xml.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 70/102

Example 4: Apply stamp to long edge of all pages

Stamp has a light gray background and a black border.

example4.xml:

<?xml version="1.0" encoding="utf-8"?>

<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp page="all" size="802 28"

 relativepos="5 0" align="middle" rotate="90"

 scale="relToA4" autoorientation="true"

 alpha="0.75" type="foreground">

 <fillrectangle color="0.8 0.8 0.8"/>

 <strokerectangle/>

 <text align="center middle"

 font="Arial" size="20"

 text="stamp on long endge"/>

 </stamp>

</pdfstamp>

Result of example4.xml.

Example 5: Stamp links

Stamp a list of links.

example5.xml:

<?xml version="1.0" encoding="utf-8"?>

<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp page="first" type="content" relativepos="-10 10" >

 <text font="MyriadPro" size="20" >Bookmarks:

- <link

 uri="http://www.pdf-tools.com/...">Product website</link>

- <link

 uri="http://www.pdf-tools.com/.../seca.pdf">Manual</link>

- <link

 uri="https://www.pdf-online.com/osa/secure.aspx">Online sample</link>

</text>

 </stamp>

</pdfstamp>

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 71/102

Result of example5.xml.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 72/102

6 Reference Manual

Note: This manual describes the COM interface only. Other interfaces (C, Java,
.NET) however work similarly, i.e. they have calls with similar names and the call
sequence to be used is the same as with COM.

6.1 PdfSecure Interface

6.1.1 AddDocMDPSignature

Method: Boolean AddDocMDPSignature(PdfSignature pSignature, Short

accessPermissions)

Add a document MDP (modification detection and prevention) signature. A PDF document can at most contain
one MDP signature. A DocMDP signature defines the access permissions of the document. It should be combined
with standard encryption, i.e. the function SaveAs should not apply encryption.

PDF documents with DocMDP signatures added with the 3-Heights™ PDF Security API require Acrobat 7 or later to
be opened. Since DocMDP signatures were introduced in the PDF Reference 1.6, they cannot be applied to PDF/A-1
input files unless the property ForceSignature is set to True.

Parameters:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature
must be set before it is added.

accessPermissions [Short] The access permissions granted are one of the following three values:

1. No changes to the document are permitted; any change to the document invalidates the signature.
2. Permitted changes are filling in forms, instantiating page templates, and signing; other changes invalidate

the signature.
3. Permitted changes are the same as for 2, as well as annotation creation, deletion, and modification; other

changes invalidate the signature.

Returns:

True Successfully added the signature to the document. Note: At this point it is not verified whether the certifi-
cate is valid or not. If an invalid certificate is provided the SaveAs function will fail later on.

False Otherwise.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 73/102

6.1.2 AddPreparedSignature

Method: Boolean AddPreparedSignature(PdfSignature pSignature)

Add a signature field including an appearance but without a digital signature. This method must be called prior to
SaveAs or SaveInMemory and should only be used in combination with SignPreparedSignature.

Parameter:

pSignature [PdfSignature] The digital signature from which the field and appearance is created. The
properties of the signature must be set before it is added.

Returns:

True Successfully prepared signature.

False Otherwise.

6.1.3 AddSignature

Method: Boolean AddSignature(PdfSignature pSignature)

Add a digital signature to the document. The signature is defined using a PdfSignature object. This method
must be called prior to SaveAs. Do not dispose of the PdfSignature object until the associated document has
been saved or closed.

More information on applying digital signatures can be found in Chapter How to Create Electronic Signatures.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature
must be set before it is added.

Returns:

True Successfully added the signature to the document.

Note: At this point it is not verified whether the certificate is valid or not. If an
invalid certificate is provided the SaveAs function will fail later on.

False Otherwise.

6.1.4 AddSignatureField

Method: Boolean AddSignatureField(PdfSignature pSignature)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 74/102

Add a signature field only. This method adds a field which is meant to be signed manually in a later step. This
method must be called prior to SaveAs or SaveInMemory.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature
must be set before it is added.

Returns:

True Successfully added the signature field to the document.

False Otherwise.

6.1.5 AddStamps

Method: Boolean AddStamps(String FileName)

Add a stamp XML file. This method must be called after the input file is opened and before the save operation. For
more information about stamping, see the section Stamping.

6.1.6 AddStampsMem

Method: Boolean AddStampsMem(Variant MemBlock)

Add a stamp XML from memory. This method must be called after the input file is opened and before the save
operation. For more information about stamping, see the section Stamping.

6.1.7 AddTimeStampSignature

Method: Boolean AddTimeStampSignature(PdfSignature pSignature)

Add a document level Time-stamp. No appearance is created. The following signature properties must be set:
TimeStampURL. The following signature properties may be set: Provider, TimeStampCredentials.

PDF documents with document level Time-stamp signatures require Acrobat X or later to be opened. Since this
type of signatures was introduced in the PDF Reference 2.0, they cannot be applied to PDF/A-1 input files unless
the property ForceSignature is set to True.

6.1.8 BeginSession

Method: Boolean BeginSession(String Provider)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 75/102

The methods BeginSession and EndSession support bulk digital signing by keeping the session to the se-
curity device (HSM, Token or Cryptographic Provider) open. See the Section Guidelines for Mass Signing for more
guidelines.

For backwards compatibility the use of these methods is optional. If used, the Provider property may not be set.
If omitted, an individual session to the provider indicated by the property Provider is used for each signature
operation.

Parameter:

Provider [String] See property Provider.

Returns:

True Session started successfully.

False Otherwise.

6.1.9 Close

Method: Boolean Close()

Close an opened input file. If the document is already closed the method does nothing.

Returns:

True The file was closed successfully.

False Otherwise.

6.1.10 ErrorCode

Property (get): TPDFErrorCode ErrorCode

This property can be accessed to receive the latest error code. See also enumeration TPDFErrorCode. PDF-
Tools error codes are listed in the header file bseerror.h. Please note that only few of them are relevant for
the 3-Heights™ PDF Security API.

6.1.11 ErrorMessage

Property (get): String ErrorMessage

Return the error message text associated with the last error (see property ErrorCode).

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 76/102

Note: The property is Nothing if no message is available.

6.1.12 EndSession

Method: Boolean EndSession()

Ends the open session to the security device.

See BeginSession.

6.1.13 ForceEncryption

Property (get, set): Boolean ForceEncryption

Default: False

File encryption is not allowed by the PDF/A standard. Therefore 3-Heights™ PDF Security API aborts and returns an
error, when encryption is configured and an input file is PDF/A. Use this option, in order to enable encryption of
PDF/A conforming files. The conformance of the output file is downgraded to PDF.

6.1.14 ForceIncrementalUpdate

Property (get, set): Boolean ForceIncrementalUpdate

Default: False

An incremental update is a copy of the original file with all modifications appended to its end. This leaves the original
file intact, such that it can later be extracted using GetRevision.

By default, modifications to signed files are performed as incremental updates, which preserves all signatures. Using
this property, an incremental update can be forced for other files as well, e.g. in order to preserve external signatures.

Incremental updates are not supported for encrypted input nor output files.

Unless a revision is signed, there might be white space characters at the revision’s end for which it is unclear to
which reivision they belong. These white space characters have no influence on the revision’s visual appearance
or content. However, they might be important in order to preserve external signaures. For a reliable extraction of
a revision it is therefore recommended to save the original file’s size. The revision can then be extractd from the
updated file by reading all data up to the original file’s size.

6.1.15 ForceSignature

Property (get, set): Boolean ForceSignature

Default: False

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 77/102

Force signature allows DocMDP (PDF 1.6) and Time-stamp signatures (PDF 2.0) on PDF/A-1 documents. The output
file’s version is upgraded and PDF/A conformance removed. Thus, the output file will contain the signature, but not
be PDF/A-1 anymore.

Applying a DocMDP or Time-stamp signature breaks PDF/A-1 compliance, therefore the default behavior is to abort
the operation with an error.

6.1.16 GetPdf

Method: Variant GetPdf()

Get the output file from memory. See also method SaveInMemory.

Returns:

A byte array containing the output PDF. In certain programming languages, such as Visual Basic 6, the type of the
byte array must explicitly be Variant.

6.1.17 GetRevision, GetRevisionFile, GetRevisionStream

Method: Variant GetRevision(Integer Revision)

Method: Boolean GetRevisionFile(Integer Revision, String FileName)

Method: Boolean GetRevisionStream(Integer Revision, Variant Stream)

Get the PDF document of a given revision number. This is useful to retrieve the state of the PDF document at the
time it has been signed. All incremental updates which have been applied after the given revision are ignored.

Parameters:

Revision [Integer] The revision number (beginning with 0).

FileName [String] The name of the file to write the revision to.

Stream [Variant] The stream to write the revision to.

Returns:

The selected revision of the PDF file.

6.1.18 GetMetadata

Method: Variant GetMetadata()

Get the the XMP metadata of the input document as byte array. If the document does not contain XMP metadata,
Nothing is returned.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 78/102

Returns:

The document XMP metadata as byte array.

6.1.19 GetSignature

Method: PdfSignature GetSignature(Long iSignature)

Get a signature field from the current document.

Parameter:

iSignature [Long] The selected signature in the document in the range from 0 to ‹n›-1, where 0 is the
first and n-1 the last signature. The total number of signatures ‹n› in the document can be retrieved using the
property SignatureCount.

Returns:

An interface to the PdfSignature.

6.1.20 GetSignatureCount

[Deprecated] Property (get, set): Long GetSignatureCount

Use the property SignatureCount instead.

6.1.21 InfoEntry

Method: String InfoEntry(String Key)

Retrieve or add a key-value pair to the document info dictionary. Values of predefined keys are also stored in the
XMP metadata package.

Popular entries specified in the PDF Reference 1.7 and accepted by most PDF viewers are "Title", "Author",
"Subject","Creator" (sometimes referred to as Application) and"Producer" (sometimes referred to as PDF
Creator).

Parameter:

Key [String] A key as string.

Returns:

The value as string.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 79/102

Note: Note that the getter does not return values of the input document but
merely those that have previously been set using InfoEntry.

Examples in Visual Basic 6:

Set the document title.

doc.InfoEntry("Title") = "My Title"

Set the creation date to 13:55:33, April 5, 2010, UTC+2.

doc.InfoEntry("CreationDate") = "D:20100405135533 + 02'00'"

6.1.22 LicenseIsValid

Property (get): Boolean LicenseIsValid

Check if the license is valid.

6.1.23 Linearize

Property (get, set): Boolean Linearize

Default: False

Get or set whether to linearize the PDF output file, i.e. optimize file for fast web access.

A linearized document has a slightly larger file size than a non-linearized file and provides the following main fea-
tures:

When a document is opened in a PDF viewer of a web browser, the first page can be viewed without download-
ing the entire PDF file. In contrast, a non-linearized PDF file must be downloaded completely before the first
page can be displayed.
When another page is requested by the user, that page is displayed as quickly as possible and incrementally as
data arrives, without downloading the entire PDF file.

6.1.24 NoCache

Property (get, set): Boolean NoCache

Default: False

Get or set whether to disable the cache for CRL and OCSP responses.

Using the cache is safe, since the responses are cached as long as they are valid only. The option affects both signa-
ture creation and validation.

See section on Caching of CRLs, OCSP, and Time-stamp Reponses for more information on the caches.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 80/102

6.1.25 Open

Method: Boolean Open(String Filename, String Password)

Open a PDF file, i.e. make the objects contained in the document accessible. If a document is already open, it is
closed first.

Parameters:

Filename [String] The file name and optionally the file path, drive or server string according to the oper-
ating systems file name specification rules.

Password [String] (optional) The user or the owner password of the encrypted PDF document. If this
parameter is left out an empty string is used as a default.

Returns:

True The file could be successfully opened.

False The file does not exist, it is corrupt, or the password is not valid. Use the property ErrorCode for addi-
tional information.

6.1.26 OpenMem

Method: Boolean OpenMem(Variant MemBlock, String Password)

Open a PDF file, i.e. make the objects contained in the document accessible. If a document is already open, it is
closed first.

Parameters:

MemBlock [Variant] The memory block containing the PDF file given as a one dimensional byte array.

Password [String] (optional) The user or the owner password of the encrypted PDF document. If this
parameter is left out an empty string is used as a default.

Returns:

True The document could be successfully opened.

False The document could not be opened, it is corrupt, or the password is not valid.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 81/102

6.1.27 PageCount

Property (get): Long PageCount

Get the number of pages of an open document. If the document is closed or if the document is a collection (also
known as PDF Portfolio) then this property is 0.

6.1.28 ProductVersion

Property (get): String ProductVersion

Get the version of the 3-Heights™ PDF Security API in the format “A.C.D.E”.

6.1.29 RevisionCount

Property (get): Integer RevisionCount

Return the number of revisions of the document (the number of incremental updates).

Although a linearized file looks like an incrementally updated file it only counts as one revision.

See also GetRevision.

6.1.30 RemoveSignatureField

Method: Boolean RemoveSignatureField(Pdfsignature pSignature)

Remove a signature field. An empty signature field can be added using AddSignatureField. This method must
be called prior to SaveAs or SaveInMemory.

Note that removing signature fields breaks the remaining signatures. Therefore it is important to first remove surplus
signatures before signing.

Returns:

True Successfully removed the signature field.

False Otherwise.

6.1.31 SaveAs

Method: Boolean SaveAs(String FileName, String UserPw, String OwnerPw,

TPDFPermission PermissionFlags, Long KeyLength, String StrF, String StmF)

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 82/102

Create an output PDF document, apply the security settings and save the content from the input file to the output
file.

The last three parameters (KeyLength, StrF, StmF) are only relevant in specific cryptographic situations. In all
other cases, it is easiest to use the default values 128, "V2", "V2".

Parameters:

FileName [String] The file name and optionally the file path, drive or server string according to the oper-
ating systems file name specification rules.

UserPw [String] (optional) Set the user password of the PDF document. If this parameter is omitted, the
default password is used. Use "" to set no password.

OwnerPw [String] (optional) Set the owner password of the PDF document. If this parameter is omitted, the
default password is used. Use "" to set no password.

PermissionFlags [TPDFPermission] (optional) The permission flags.

By default no encryption is used (-1). The permissions that can be granted are listed at the enumeration
TPDFPermission. To not encrypt the output document, set PermissionFlags toePermNoEncryption, user
and owner password to "". In order to allow high quality printing, flags ePermPrint and ePermDigi-

talPrint need to be set.

KeyLength [Long] (optional, Default: 128) The key length is a determining factor of the strength of the
encrypting algorithm and the amount of time to break the cryptographic system. For RC4 the key length can
be any value from 40 to 128 that is a multiple of 8.

For AESV2 the key length is automatically set to 128, for AESV3 to 256. Notes:

Certain PDF viewers only support 40 and 128 bit encryption. Other tools, such as the 3-Heights™ tools also
support other encryption key lengths
256 bit encryption requires Acrobat 9 or later.
If the selected permission flags require a minimum key length, the key length is automatically adjusted (e.g.
to 128 bits)

StrF [String] (optional, Default: "V2") Set the string crypt filter. Supported values are "None", "V2",
"RC4", "AESV2" and "AESV3". Setting this value to an empty string or Nothing, means the default filter is
used. Supported crypt filters are:

"None": The application does not decrypt data.
"V2" or "RC4": (PDF 1.2) The application asks the security handler for the encryption key and implicitly
decrypts data using the RC4 algorithm.
"AESV2": (PDF 1.6) The application asks the security handler for the encryption key and implicitly decrypts
data using the AES-V2 128 bit algorithm.
"AESV3": (PDF 1.7) The application asks the security handler for the encryption key and implicitly decrypts
data using the AES-V3 256 bit algorithm.

StmF [String] (optional, Default: "V2") Set the stream crypt filter. Supported values are "None", "V2",
"RC4", "AESV2" and "AESV3". Note that certain viewers require the stream crypt filter to be equal to the
string crypt filter, e.g. both must be RC4 or AES. Setting this value to an empty string or Nothing means the
default filter is used.

Returns:

True The opened document could successfully be saved to file.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 83/102

False Otherwise. One of the following occurred12:

The output file or the signature cannot be created.
PDF_E_FILECREATE: Failed to create the file.
SIG_CREA_E_SESSION: Cannot create a session (or CSP).
SIG_CREA_E_STORE: The certificate store is not available.
SIG_CREA_E_CERT: The certificate cannot be found.
SIG_CREA_E_PRIVKEY: The private key is not available.
SIG_CREA_E_INVCERT: The signing certificate is invalid, because it has expired, is not yet valid, or was
revoked.
SIG_CREA_E_OCSP: Couldn’t get response from OCSP server.
SIG_CREA_E_CRL: Couldn’t get response from CRL server.
SIG_CREA_E_TSP: Couldn’t get response from Time-stamp server.
PDF_E_SIGLENGTH: Incorrect signature length.

Set permission flags equally to Acrobat 7:

In Acrobat 7, there are four different fields/check boxes that can be set. In brackets are the corresponding permission
flags.

Printing Allowed:
None ()
Low Resolution (ePermPrint)
High Resolution (ePermPrint + ePermDigitalPrint)

Changes Allowed:
None ()
Inserting, deleting and rotating pages (ePermModify)
Filling in form fields and signing existing signature fields (ePermAnnotate)
Commenting, filling in form fields, and signing existing signature fields (ePermAnnotate + ePermFil-

lForms)
Any except extracting pages (ePermModify + ePermAnnotate + ePermFillForms)

Enable copying of text, images and other content (ePermCopy + ePermSupportDisabilities)
Enable text access for screen reader devices for the visually impaired (ePermSupportDisabilities)

These flags can be combined. For example to grant permission which are equal to Acrobat’s 7 “Printing Allowed:
High Resolution” and “Enable copying of text, images and other content”, set the flags ePermPrint + ePer-

mCopy + ePermSupportDisabilities + ePermDigitalPrint.

6.1.32 SaveInMemory

Method: Boolean SaveInMemory(String UserPw, String OwnerPw, TPDFPermission

PermissionFlags, Long KeyLength, String StrF, String StmF)

Save the output PDF in memory. After the Close call it can be accessed using the method GetPdf.

All parameters are identical to the SaveAs method.

See also chapter How to Use the in-Memory Functions.

Returns:

True The document could be saved in memory successfully.

12 This is not a complete list. If SaveAs returns False, it is recommended to abort the processing of the file and log the error code and error
message.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 84/102

False Otherwise.

6.1.33 SetLicenseKey

Method: Boolean SetLicenseKey(String LicenseKey)

Set the license key.

6.1.34 SetMetadata, SetMetadataStream

Method: Boolean SetMetadata(String FileName)

Method: Boolean SetMetadataStream(Variant Stream)

Set the the XMP metadata of the document.

Parameters:

FileName [String] The file name where the metadata are read from.

Stream [Variant] The stream where the metadata are read from.

Returns:

Whether or not the metadata has been set successfully.

6.1.35 SetSessionProperty

Method: Boolean SetSessionPropertyString(String Name, String Value)

Method: Boolean SetSessionPropertyBytes(String Name, Variant Value)

Provider-specific session configuration.

Properties have to be set before calling BeginSession and are deleted when calling EndSession.

Parameters:

Name [String] The name of the property. The names that are supported are specific to the provider used
with BeginSession.

Value [String] The value of the property as string.

Value [Variant] The value of the property as byte array.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 85/102

6.1.36 SignatureCount

Property (get): Long SignatureCount

Return the number of signature fields. If 0 is returned, it means there is no digital signature in the document.

6.1.37 SignPreparedSignature

Method: Boolean SignPreparedSignature(PdfSignature pSignature)

Create a digital signature for an existing signature field, which was previously created using the method AddPre-
paredSignature. This method must be called prior to SaveAs or SaveInMemory.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. This must be the same signature
as used in AddPreparedSignature.

Returns:

True Successfully added the signature to the document.

False Otherwise.

6.1.38 SignSignatureField

Method: Boolean SignSignatureField(Pdfsignature pSignature)

Sign an empty signature field. An empty signature field can be added using AddSignatureField. This method
must be called prior to SaveAs or SaveInMemory.

Returns:

True Successfully placed the signature into the signature field.

False Otherwise.

6.1.39 Terminate

Method: Void Terminate()

Terminate all open sessions, and finalize and unload all PKCS#11 drivers. Some drivers require Terminate to be called.
Otherwise, your application might crash and/or your HSM, USB token or smart card might not be unlocked.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 86/102

When using the C/C++ API, Terminate may not be called from the context of the destructor of a global or static
object, an atexit() handler, nor the DllMain() entry point.

Make sure to end all open sessions and dispose of all PdfSecure objects before calling Terminate. After calling
Terminate, the process may not call any other methods of this class.

6.1.40 TestSession

Method: Boolean TestSession()

Test if the current session is still alive.

Returns:

True Subsequent calls to SaveAs and SaveInMemory are likley to succeed.

False Subsequent calls to SaveAs and SaveInMemory are unlikely to succeed. Error codes are the same as in
SaveAs where applicable.

6.1.41 ValidateSignature

Method: Boolean ValidateSignature(PdfSignature pSignature)

Validate an existing digital signature, which was previously retrieved using the method GetSignature. The com-
ponent supports the verification of signatures including Time-stamps using cryptographic tokens and hardware
security modules (HSM) through their PKCS#11 interface.

The validity checks are carried out at the time indicated either by the embedded Time-Stamp, if present, or by the
signing time indicated in the PDF signature field object otherwise. Furthermore, this method extracts the following
values from the cryptographic signature and sets the respective properties of thePdfSignature Interface object:
Date, Email, Name, Issuer, SignerFingerprint, and TimeStampFingerprint.

If you get the error code SIG_VAL_E_FAILURE, your cryptographic provider does not offer the algorithms used
for the signature. For example, the default provider (CryptoAPI of Windows Cryptographic Provider) does not sup-
port the SHA-2 hash algorithms. In this case, choose another provider.

Parameter:

pSignature [PdfSignature] The digital signature that is to be validated.

Returns:

True The digital signature is valid, i.e. the document has not been modified. If other problems are detected during
signature validation, the property ErrorCode may have one of the following values:

1. SIG_VAL_W_ISSUERCERT

2. SIG_VAL_W_TSP

3. SIG_VAL_W_TSPCERT

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 87/102

4. SIG_VAL_W_NOTRUSTCHAIN

5. SIG_VAL_W_PADES

Note that the order of the list defines the priority of the error codes from highest to lowest. If multiple problems
are detected, the error code with the highest priority is returned.

False The signature is corrupt or the document has been modified.

See also enumeration TPDFErrorCode.

6.2 PdfSignature Interface

This interface allows creating a signature and setting its position and appearance. The visual part of the signature
consists of two (multi-line) texts. The string of both texts are generated automatically based on the signature prop-
erties if not set manually.

6.2.1 ContactInfo

Property (get, set): String ContactInfo

Default: ""

Add a descriptive text as signer contact info, e.g. a phone number. This enables a recipient to contact the signer to
verify the signature. This is not required in order to create a valid signature.

If this property is set to an empty string, no entry is created.

6.2.2 Contents

Property (get, set): VARIANT Contents

Get the Contents of the signature as byte array. This is the actual digital signature, whose format depends on the
type of digital signature.

6.2.3 Date

Property (get, set): String Date

Default: "D:00000000000000Z" (set to current date when signature is added)

This is the date when the signature is added. When this property is not set, the current time and date is used. The
format of the date is: "D:YYYYMMDDHHMMSSZ". The meanings are:

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 88/102

D Header of Date Format

YYYY year

MM month

DD day

HH hour

MM minutes

SS seconds

Z UTC (Zulu) Time

Example for December 17, 2007, 14:15:13, GMT: "D:20071217141513Z".

Note: This property is set at the time when the signature is applied to the
document. If this property is set to an empty string, no entry is created.

6.2.4 DocumentHasBeenModified

Property (get): Boolean DocumentHasBeenModified

Get whether the document has been modified (True) or not (False) since the selected signature was added.

6.2.5 Email

Property (get): String Email

This property represents the email address of the signer. The method ValidateSignature extracts the address
from the signing certificate’s subject and sets this property.

6.2.6 EmbedRevocationInfo

Property (get, set): Boolean EmbedRevocationInfo

Default: True

Embed revocation information such as online certificate status response (OCSP - RFC 2560) and certificate revoca-
tion lists (CRL - RFC 3280).

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 89/102

Revocation information of a certificate is either an OCSP response or a CRL, which is provided by a validation service
at the time of signing and acts as proof that at the time of signing the certificate is valid. This is useful because even
when the certificates expires or is revoked at a later time, the signature in the signed document remains valid.

Embedding revocation information is optional but suggested when applying advanced or qualified electronic sig-
natures. If the embedding is enabled then the information of the signer certificate and the issuer certificates other
than the root certificate is embedded as well. This implies that both OCSP responses and CRLs can be present in the
same message. The downsides of embedding revocation information are the increase of the file size (normally by
around 20 KB) and that it requires a connection to a validation service, which delays the process of signing (normally
by around 2 seconds). For mass signing it is suggested to use the caching mechanism, see chapter Caching of CRLs,
OCSP, and Time-stamp Reponses.

Embedding revocation information requires an online connection to the CA that issues them. The firewall must be
configured accordingly. In case a web proxy is used, it must be ensured the following MIME types are supported
when using OCSP (not required for CRL):

application/ocsp-request

application/ocsp-response

IfEmbedRevocationInfo is set toTrue, but the embedding failed, e.g. because the OCSP server is not reachable,
the return value of SaveAs is False, and the ErrorCode after SaveAs is SIG_CREA_E_OCSP.

6.2.7 FillColor

Property (get, set): Long FillColor

Default: 16761024 (red = 192, green = 192, blue = 255)

This property represents the color of the signature’s background as an RGB value.

In order to not set a color, i.e. keep the rectangle transparent, set the FillColor to -1. This is particularly useful in
combination with adding an image to the signature.

6.2.8 FieldName

Property (get, set): String FieldName

Get or set the name of the signature form field.

If a signature is added to the document and this property is not set, a unique field name is generated.

6.2.9 Filter

Property (get): String Filter

Get the encryption filter of the signature, such as "Adobe.PPKLite".

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 90/102

6.2.10 FontName1

Property (get, set): String FontName1

Default: "Arial"

This property defines the font used in upper text, i.e. the text that is set by the property Text1. The font can
either be specified as a path to the font file, e.g. "C:\Windows\Fonts\arial.ttf", or as a font name, such
as "Times New Roman,Bold". When using a font name, the corresponding font must be present in one of the
font directories described in chapter Fonts.

6.2.11 FontName2

Property (get, set): String FontName2

Default: FontName1

This property represents the path to the font name used in lower text, i.e. the text that is set by the property Text2.
The propery works analogously to FontName1.

6.2.12 Font1Mem

Property (set): Variant Font1Mem

Set the font used in upper text (see FontName1) by passing the font as a memory buffer.

6.2.13 Font2Mem

Property (set): Variant Font2Mem

Set the font used in lower text (see FontName2) by passing the font as a memory buffer.

6.2.14 FontSize1

Property (get, set): Single FontSize1

Default: 16

Define the font size of the Text1.

6.2.15 FontSize2

Property (get, set): Single FontSize2

Default: 8

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 91/102

Define the font size of the Text2.

6.2.16 HasSignature

Property (get): Boolean HasSignature

Get whether the signature has an actual digital signature object or not.

If True, this PdfSignature object can be validated using ValidateSignature. If False, this PdfSigna-
ture object can be signed using SignSignatureField.

6.2.17 ImageFileName

Property (get, set): String ImageFileName

Default: ""

Define the path to an image file that is to be added to the signature. The image is centered and scaled down pro-
portionally to fit into the given rectangle. If the path is Nothing, or the image does not exist, the appearance’s
background is a filled rectangle using the colors FillColor and StrokeColor.

If you want the appearance to contain the image only and no text, set the property Text2 to a space " ".

6.2.18 Issuer

Property (get, set): String Issuer

Default: ""

Set the issuer of the certificate. The"Issuer" corresponds to the common name (CN) of the issuer. In the Windows’
certificate store this corresponds to "Issued by".

This property can be used to select the signer certificate for signing (see description of Cryptographic Provider).

6.2.19 LineWidth

Property (get, set): Single LineWidth

Default: 2

This is the thickness of the line surrounding the visual appearance of the signature.

6.2.20 Location

Property (get, set): String Location

Default: ""

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 92/102

This is the physical location where the signature was added, for example "Zurich, Switzerland".

If this property is set to an empty string, no entry is created.

6.2.21 Name

Property (get, set): String Name

Default: ""

In order to sign a PDF document, a valid, existing certificate name must be provided.

The “Name” corresponds to the common name (CN) of the subject.

In the Windows’ certificate store this corresponds to “Issued to”.

When using a Windows OS, the certificate must be available in the Windows certificate store. See also chapter Digital
Signatures.

This property can be used to select the signer certificate for signing (see description of Cryptographic Provider in
use).

6.2.22 PageNo

Property (get, set): Long PageNo

Default: -1 (last page)

Define the page number where the signature is to be added to the document. If an invalid page number is set, it is
added to the last page.

The numbers are counted starting from 1 for the first page to the value of PageCount for the last page.

6.2.23 Provider

Property (get, set): String Provider

Default: (Windows only) "Microsoft Base Cryptographic Provider v1.0"

This property specifies the cryptographic provider used to create and verify signatures.

For more information on the different providers available, see the description in the respective subsection of the
section Cryptographic Provider.

When using the Windows Cryptographic Provider, the value of this property is to be set to a string with the
following syntax:

"[ProviderType:]Provider[;PIN]"

If the name of the provider is omitted, the default provider is used.

Example: "123456" being the pin code:

Provider = "Microsoft Base Cryptographic Provider v1.0;123456"

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 93/102

Provider = ";123456"

When using the PKCS#11 Provider, the value of this property is to be set to a string with the following syntax:

"PathToDll;SloId;Pin"

Example:

Provider = "\WINDOWS\system32\siecap11.dll;4;123456"

When using any of the service providers, such as the Swisscom All-in signing service, the value of this property
is essentially the url of the service endpoint:

"http[s]://server.servicedomain.com:8080/url"

6.2.24 ProxyURL

[Deprecated] Property (get, set): String ProxyURL

Default: ""

This property has been deprecated. For more information, see the chapter How to Use a Proxy.

6.2.25 ProxyCredentials

[Deprecated] Property (get, set): String ProxyCredentials

Default: ""

This property has been deprecated. For more information, see the chapter How to Use a Proxy.

6.2.26 Reason

Property (get, set): String Reason

Default: ""

Set or get the descriptive text for why the digital signature was added. It is not required in order to create a valid
signature.

If this property is set to an empty string, no entry is created.

6.2.27 Rect

Property (get, set): Variant Rect

Default: [0, 0, 0, 0]

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 94/102

Set or get the position and size of the digital signature annotation. The default is an invisible signature.

The position is defined by the four values for the lower-left (x1, y1) and upper-right (x2, y2) corner of the rectangle.
The units are PDF points (1 point = 1/72 inch, A4 = 595 x 842 points, Letter = 612 x 792 points) measured from the
lower left corner of the page. If either the width or height is zero or negative, an invisible signature is created, i.e.
no visible appearance is created for the signature. To create a signature in the lower left corner set the rectangle to
[10, 10, 210, 60].

Hint about using this property in programming language that do not support the type Variant: In order to find
out what type you should use, create a PdfSignature object and look at the default value of the property in the
debugger.

6.2.28 Revision

Property (get): Integer Revision

Return the revision number of the PDF document associated with this signature. The associated PDF document can
be retrieved using the method GetRevision, GetRevisionFile, GetRevisionStream.

6.2.29 SerialNumber

Property (get, set): String SerialNumber

The serial number with the issuer can be used to select a certificate for signing.

This property is a hex string as displayed by the “Serial number” field in the Microsoft Management Console (MMC),
e.g. "49 cf 7d d1 6c a9".

This property can be used to select the signer certificate for signing (see description of Cryptographic Provider in
use).

6.2.30 SignerFingerprint

Property (get, set): Variant SignerFingerprint

The sha1 fingerprint of the signer certificate. This property can be used to select the signer certificate for signing (see
description of Cryptographic Provider). After validating a signature, this property contains the validated signature’s
fingerprint.

6.2.31 SignerFingerprintStr

Property (get, set): String SignerFingerprintStr

The hex string representation of the signer certificate’s sha1 fingerprint. This property can be used to select the
signer certificate for signing (see description of Cryptographic Provider).

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 95/102

All characters outside the ranges 0-9, a-f and A-F are ignored. In the Microsoft Management Console, the
“Thumbprint” value can be used without conversion, if the “Thumbprint algorithm” is “sha1”. E.g. b5 e4 5c 98
5a 7e 05 ff f4 c6 a3 45 13 48 0b c6 9d e4 5d f5.

6.2.32 Store

Property (get, set): String Store

Default: "MY"

For the Windows Cryptographic Provider this defines the certificate store from where the signing certificate should
be taken. This depends on the OS. The default is MY. Other supported values are: CA or ROOT.

6.2.33 StoreLocation

Property (get, set): Integer StoreLocation

Default: 1

For the Windows Cryptographic Provider this defines the location of the certificate store from where the signing
certificate should be taken. Supported are:

0 Local Machine

1 Current User (default)

For more information, see the detailed description of the Windows Cryptographic Provider.

6.2.34 StrokeColor

Property (get, set): Long StrokeColor

Default: 8405056 (red = 64, green = 64, blue = 128)

This is the color of the signature’s border line as an RGB value.

In order to not set a color, i.e. keep it transparent, set the StrokeColor to -1.

6.2.35 SubFilter

Property (get): String SubFilter

Get the name of the sub filter, such as "adbe.pkcs7.detached".

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 96/102

6.2.36 Text1

Property (get, set): String Text1

Default: ""

This is the upper text that is added to the signature.

If this property is set to blank, the signature name is added to the upper text line of the visual signature.

In order to position text use the following syntax: ‹tab›‹x›,‹y›‹delimiter›‹text›

‹tab› tabulator

‹x›, ‹y› integers

‹delimiter› Single character such as space

‹text› Any text string not containing a ‹tab›

Example: for Visual Basic .NET

Dim sig As New PdfSecureAPI.Signature

...

sig.Text1 = Microsoft.VisualBasic.vbTab & "5,50 Peter Pan"

sig.Text2 = Microsoft.VisualBasic.vbTab & "15,25 Signed this document"

6.2.37 Text2

Property (get, set): String Text2

Default: ""

This is the lower text that is added to the signature. The text can be multi-lined by using linefeed (’\n’, 0xA).

If this property is set to blank, a text three-line text is constructed that consists of:

A statement who applied to signature
The reason of the signature
The date

See also property Text1. If you want the appearance to not contain any text, set this property to a space " ".

6.2.38 TimeStampCredentials

Property (get, set): String TimeStampCredentials

Default: ""

If a Time-stamp server requires authentication, use this property to provide the credentials. Credentials commonly
have the syntax "username:password".

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 97/102

6.2.39 TimeStampFingerprint

Property (get): Variant TimeStampFingerprint

The sha1 fingerprint of the Time-stamp server certificate. After validating a signature that contains a Time-stamp,
this property contains the fingerprint of the Time-stamp server’s certificate.

6.2.40 TimeStampURL

Property (get, set): String TimeStampURL

Default: ""

The URL of the trusted Time-stamp authority (TSA) from which a Time-stamp shall be acquired. This setting is sug-
gested to be used when applying a Qualified Electronic Signature. Example: "tsu.my-timeserver.org". Ap-
plying a Time-stamp requires an online connection to a time server; the firewall must be configured accordingly. In
case a web proxy is used, it must be ensured the following MIME types are supported:

application/timestamp-query

application/timestamp-reply

If an invalid Time-stamp server address is provided or no connection can be made to the time server, the return
code of SaveAs is false, and the property ErrorCode is set to SIG_CREA_E_TSP.

6.2.41 UserData

Property (get, set): Variant UserData

Default: Nothing

This property has only a meaning if a Custom Signature Handler is used.

6.3 Enumerations

Note: Depending on the interface, enumerations may have TPDF as prefix
(COM, C) or PDF as prefix (.NET) or no prefix at all (Java).

6.3.1 TPDFErrorCode

All TPDFErrorCode enumerations start with a prefix, such as PDF_, followed by a single letter which is one of S,
E, W or I, an underscore and a descriptive text.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 98/102

The single letter gives an indication of the severity of the error. These are: Success, Error, Warning and Information.
In general, an error is returned if an operation could not be completed, e.g. no valid output file was created. A
warning is returned if the operation was completed, but problems occurred in the process.

A list of all error codes is available in the C API’s header file bseerror.h, the javadoc documentation of
com.pdftools.NativeLibrary.ERRORCODE and the .NET documentation of Pdftools.Pdf.PDFEr-
rorCode. Note that only a few are relevant for the 3-Heights™ PDF Security API, most of which are listed here:

TPDFErrorCode Table

TPDFErrorCode Description

PDF_S_SUCCESS The operation was completed successfully.

LIC_E_NOTSET,

LIC_E_NOTFOUND, . . .
Various license management related errors.

PDF_E_FILEOPEN Failed to open the file.

PDF_E_FILECREATE Failed to create the file.

PDF_E_PASSWORD The authentication failed due to a wrong password.

PDF_E_UNKSECHANDLER The file uses a proprietary security handler, e.g. for a proprietary digital
rights management (DRM) system.

PDF_E_XFANEEDSRENDERING The file contains unrendered XFA form fields, i.e. the file is an XFA and not
a PDF file.

The XFA (XML Forms Architecture) specification is referenced as an
external document to ISO 32’000-1 (PDF 1.7) and has not yet been
standardized by ISO. Technically spoken, an XFA form is included as a
resource in a shell PDF. The PDF’s page content is generated dynamically
from the XFA data, which is a complex, non-standardized process. For this
reason, XFA is forbidden by the ISO Standards ISO 19’005-2 (PDF/A-2) and
ISO 32’000-2 (PDF 2.0) and newer.

PDF_W_ENCRYPT Aborted processing of signed and encrypted document.

PDF_E_PDFASIG Signature would destroy PDF/A compliance. Signature can be forced
using ForceSignature.

PDF_E_INPSIG Input document must not be signed. Unable to encrypt or linearize input
file.

SIG_CREA_E_SESSION Cannot create a session (or CSP).

SIG_CREA_E_STORE Cannot open certificate store.

SIG_CREA_E_CERT Certificate not found in store.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 99/102

TPDFErrorCode Table

SIG_CREA_E_INVCERT The signing certificate is invalid.

SIG_CREA_E_OCSP Couldn’t get response from OCSP server.

SIG_CREA_E_CRL Couldn’t get response from CRL server.

SIG_CREA_E_TSP Couldn’t get response from Time-stamp server.

SIG_CREA_E_PRIVKEY Private key not available.

This is usually because a pin is required and was not entered correctly.
Also, this error might be returned because there is no private key available
for the signing certificate or the key is no properly associated with the
certificate. See section Cryptographic Provider for more information.

SIG_CREA_E_SERVER Server error.

SIG_CREA_E_ALGO The cryptographic provider does not implement a required algorithm.
See section Cryptographic Provider for more information.

SIG_CREA_E_FAILURE Another failure occurred.

PDF_E_SIGLENGTH Incorrect signature length.

A PDF is signed in a two step process. First, the output document is
created with space reserved for the signature. Second, the actual
cryptographic signature is created and written into the space reserved. If
the space reserved is too small for the actual signature this error is
returned. In general this error should not occur. If it does, the next
signing attempt should be successful.

PDF_E_SIGABG Unable to open signature background image.

PDF_W_NOENCRYPTION The file is PDF/A and must not be encrypted. Encryption can be forced
using ForceEncryption.

Validation specific error codes

TPDFErrorCode Description

SIG_VAL_E_ALGO Unsupported algorithm found.

SIG_VAL_E_FAILURE Program failure occurred.

SIG_VAL_E_CMS Malformed cryptographic message syntax (CMS).

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 100/102

SIG_VAL_E_DIGEST Digest mismatch (document has been modified).

SIG_VAL_E_SIGNER CERT Signer’s certificate is missing.

SIG_VAL_E_SIGNATURE Signature is not valid.

SIG_VAL_W_ISSUER CERT None of the certificates was found in the store.

SIG_VAL_W_NOTRUST CHAIN The trust chain is not embedded.

SIG_VAL_W_TSP The Time-stamp is invalid.

SIG_VAL_W_TSPCERT The Time-stamp certificate was not found in the store.

SIG_VAL_W_NOTSP The Time-stamp is not present.

SIG_VAL_W_PADES The signature does not conform to the PAdES standard, e.g. because the
signature is not DER encoded or the CMS contains more than one
SignerInfo.13

6.3.2 TPDFPermission

An enumeration for permission flags. If a flag is set, the permission is granted.

TPDFPermission Table

TPDFPermissionFlag Description

ePermNoEncryption Do not apply encryption. This enumeration shall not be combined with
another enumeration. When using this enumeration set both passwords
to an empty string or Nothing.

ePermNone Grant no permissions

ePermPrint Low resolution printing

ePermModify Changing the document

ePermCopy Content copying or extraction

ePermAnnotate Annotations

13 Adobe Acrobat XI classifies such signatures as valid.

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 101/102

TPDFPermission Table

ePermFillForms Filling of form fields

ePermSupportDisabilities Support for disabilities

ePermAssemble Document assembly

ePermDigitalPrint High resolution printing

ePermAll Grant all permissions

Changing permissions or granting multiple permissions is done using a bitwise or operator. Changing the current
permissions in Visual Basic should be done like this:

Allow Printing

Permission = Permission Or ePermPrint

Prohibit Printing

Permission = Permission And Not ePermPrint

© PDF Tools AG – Premium PDF Technology 3-Heights™ PDF Security API, September 30, 2017 | 102/102

7 Licensing, Copyright, and Contact

PDF Tools AG is a world leader in PDF (Portable Document Format) software, delivering reliable PDF products to
international customers in all market segments.

PDF Tools AG provides server-based software products designed specifically for developers, integrators, consultants,
customizing specialists and IT-departments. Thousands of companies worldwide use our products directly and hun-
dreds of thousands of users benefit from the technology indirectly via a global network of OEM partners. The tools
can be easily embedded into application programs and are available for a multitude of operating system platforms.

Licensing and Copyright

The 3-Heights™ PDF Security API is copyrighted. This user’s manual is also copyright protected; it may be copied
and given away provided that it remains unchanged including the copyright notice.

Contact

PDF Tools AG
Kasernenstrasse 1
8184 Bachenbülach
Switzerland
http://www.pdf-tools.com

pdfsales@pdf-tools.com

http://www.pdf-tools.com
mailto:pdfsales@pdf-tools.com

	Contents
	1 Introduction
	1.1 Description
	1.2 Functions
	1.2.1 Features
	1.2.2 Formats
	1.2.3 Compliance

	1.3 Interfaces
	1.4 Operating Systems
	1.5 How to Best Read this Manual
	1.6 Digital Signatures
	1.6.1 Overview
	1.6.2 Terminology
	1.6.3 Why Digitally Signing?
	1.6.4 What is an Electronic Signature?
	Simple Electronic Signature
	Advanced Electronic Signature
	Qualified Electronic Signature

	1.6.5 How to Create Electronic Signatures
	Preparation Steps
	Application of the Signature

	2 Installation and Deployment
	2.1 Windows
	2.2 Unix
	2.2.1 All Unix Platforms
	2.2.2 macOS

	2.3 Interfaces
	2.3.1 Development
	2.3.2 Deployment

	2.4 Interface Specific Installation Steps
	2.4.1 COM Interface
	2.4.2 Java Interface
	2.4.3 .NET Interface
	2.4.4 C Interface

	2.5 Uninstall, Install a New Version
	2.6 Note about the Evaluation License
	2.7 Special Directories
	2.7.1 Directory for temporary files
	2.7.2 Cache Directory
	2.7.3 Font Directories

	3 License Management
	3.1 Graphical License Manager Tool
	3.1.1 List all installed license keys
	3.1.2 Add and delete license keys
	3.1.3 Display the properties of a license
	3.1.4 Select between different license keys for a single product

	3.2 Command Line License Manager Tool
	3.3 License Key Storage
	3.3.1 Windows
	3.3.2 macOS
	3.3.3 Unix/Linux

	4 Programming Interfaces
	4.1 Visual Basic 6
	4.2 C/C++
	4.3 .NET
	4.3.1 Visual Basic
	4.3.2 C#
	4.3.3 Deployment
	Detailed description
	Simplified description

	4.3.4 Troubleshooting: TypeInitializationException
	Troubleshooting: DllNotFoundException
	Troubleshooting: BadImageFormatException

	5 User’s Guide
	5.1 Overview of the API
	5.1.1 What is the 3-Heights™ PDF Security API about?

	5.2 How does the API work in general?
	5.3 Encryption
	5.3.1 Encryption and how it works in PDF
	5.3.2 Owner Password and User Password
	5.3.3 Permission Flags
	5.3.4 How to Encrypt a PDF Document
	5.3.5 How to Read an Encrypted PDF Document
	5.3.6 How secure is PDF Encryption?

	5.4 Fonts
	5.4.1 Font Cache

	5.5 Cryptographic Provider
	5.5.1 PKCS#11 Provider
	Configuration
	Interoperability Support
	Selecting a Certificate for Signing
	Using PKCS#11 stores with missing issuer certificates

	5.5.2 Windows Cryptographic Provider
	Configuration
	Selecting a Certificate for Signing
	Certificates
	Qualified Certificates

	5.5.3 3-Heights™ Signature Creation and Validation Service
	Configuration
	Selecting a Certificate for Signing

	5.5.4 SwissSign Digital Signing Service
	5.5.5 SwissSign SuisseID Signing Service
	5.5.6 QuoVadis sealsign
	5.5.7 Swisscom All-in Signing Service
	General Properties
	Provider Session Properties
	On-Demand Certificates
	Step-Up Authorization using Mobile-ID

	5.5.8 Custom Signature Handler

	5.6 How to Create Digital Signatures
	5.6.1 How to Sign a PDF Document
	5.6.2 How to Create a Preview of a Signed Document
	5.6.3 How to Create a PAdES LTV Signature
	5.6.4 How to Apply Multiple Signatures
	5.6.5 How to Create a Time-stamp Signature
	5.6.6 How to Create a Visual Appearance of a Signature
	5.6.7 Guidelines for Mass Signing
	Keep the session to the security device open for multiple sign operations
	Signing concurrently using multiple threads
	Thread safety with a PKCS#11 provider

	5.6.8 Miscellaneous
	Caching of CRLs, OCSP, and Time-stamp Reponses
	How to Use a Proxy
	Configuration of Proxy Server and Firewall

	5.7 How to Validate Digital Signatures
	5.7.1 Validation of a Qualified Electronic Signature
	Trust Chain
	Revocation Information
	Time-stamp

	5.7.2 Validation of a PAdES LTV Signature
	Trust Chain
	Revocation information
	Time-stamp
	LTV expiration date
	Other PAdES Requirements

	5.8 Advanced Guide
	5.8.1 How to Use the in-Memory Functions

	5.9 Stamping
	5.9.1 Stamp File Syntax
	Stamp
	Coordinates
	Modify content of existing stamps

	Stamp content
	Text
	Images and Geometric Shapes
	Transformations

	5.9.2 Examples
	Example 1: Simple Stamps
	Example 2: Modify “Simple Stamp”
	Example 3: Add watermark text diagonally across pages
	Example 4: Apply stamp to long edge of all pages
	Example 5: Stamp links

	6 Reference Manual
	6.1 PdfSecure Interface
	6.1.1 AddDocMDPSignature
	6.1.2 AddPreparedSignature
	6.1.3 AddSignature
	6.1.4 AddSignatureField
	6.1.5 AddStamps
	6.1.6 AddStampsMem
	6.1.7 AddTimeStampSignature
	6.1.8 BeginSession
	6.1.9 Close
	6.1.10 ErrorCode
	6.1.11 ErrorMessage
	6.1.12 EndSession
	6.1.13 ForceEncryption
	6.1.14 ForceIncrementalUpdate
	6.1.15 ForceSignature
	6.1.16 GetPdf
	6.1.17 GetRevision, GetRevisionFile, GetRevisionStream
	6.1.18 GetMetadata
	6.1.19 GetSignature
	6.1.20 GetSignatureCount
	6.1.21 InfoEntry
	6.1.22 LicenseIsValid
	6.1.23 Linearize
	6.1.24 NoCache
	6.1.25 Open
	6.1.26 OpenMem
	6.1.27 PageCount
	6.1.28 ProductVersion
	6.1.29 RevisionCount
	6.1.30 RemoveSignatureField
	6.1.31 SaveAs
	6.1.32 SaveInMemory
	6.1.33 SetLicenseKey
	6.1.34 SetMetadata, SetMetadataStream
	6.1.35 SetSessionProperty
	6.1.36 SignatureCount
	6.1.37 SignPreparedSignature
	6.1.38 SignSignatureField
	6.1.39 Terminate
	6.1.40 TestSession
	6.1.41 ValidateSignature

	6.2 PdfSignature Interface
	6.2.1 ContactInfo
	6.2.2 Contents
	6.2.3 Date
	6.2.4 DocumentHasBeenModified
	6.2.5 Email
	6.2.6 EmbedRevocationInfo
	6.2.7 FillColor
	6.2.8 FieldName
	6.2.9 Filter
	6.2.10 FontName1
	6.2.11 FontName2
	6.2.12 Font1Mem
	6.2.13 Font2Mem
	6.2.14 FontSize1
	6.2.15 FontSize2
	6.2.16 HasSignature
	6.2.17 ImageFileName
	6.2.18 Issuer
	6.2.19 LineWidth
	6.2.20 Location
	6.2.21 Name
	6.2.22 PageNo
	6.2.23 Provider
	6.2.24 ProxyURL
	6.2.25 ProxyCredentials
	6.2.26 Reason
	6.2.27 Rect
	6.2.28 Revision
	6.2.29 SerialNumber
	6.2.30 SignerFingerprint
	6.2.31 SignerFingerprintStr
	6.2.32 Store
	6.2.33 StoreLocation
	6.2.34 StrokeColor
	6.2.35 SubFilter
	6.2.36 Text1
	6.2.37 Text2
	6.2.38 TimeStampCredentials
	6.2.39 TimeStampFingerprint
	6.2.40 TimeStampURL
	6.2.41 UserData

	6.3 Enumerations
	6.3.1 TPDFErrorCode
	6.3.2 TPDFPermission

	7 Licensing, Copyright, and Contact

