
User Manual

3-Heights®
PDF Security API

Version 6.27.6

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 1/121

Contents

1 Introduction . 7
1.1 Description . 7
1.2 Functions . 7
1.2.1 Features . 8
1.2.2 Formats . 9
1.2.3 Conformance . 9
1.3 Interfaces . 9
1.4 Operating systems . 10
1.5 How to best read this manual . 10
1.6 Digital signatures . 10
1.6.1 Overview . 10
1.6.2 Terminology . 10
1.6.3 Why digitally signing? . 11
1.6.4 What is an electronic signature? . 12

Simple electronic signature . 12
Advanced electronic signature . 12
Qualified electronic signature . 13

1.6.5 Creating electronic signatures . 13
Preparation steps . 13
Application of the signature . 14

2 Installation and deployment . 16
2.1 Windows . 16
2.2 Linux and macOS . 16
2.2.1 Linux . 17
2.2.2 macOS . 17
2.3 ZIP archive . 18
2.3.1 Development . 18
2.3.2 Deployment . 19
2.4 NuGet package . 20
2.5 Interfacespecific installation steps . 21
2.5.1 COM interface . 21
2.5.2 Java interface . 21
2.5.3 .NET interface . 22
2.5.4 C interface . 22
2.6 Uninstall, Install a new version . 22
2.7 Note about the evaluation license . 23
2.8 Special directories . 23
2.8.1 Directory for temporary files . 23
2.8.2 Cache directory . 23
2.8.3 Font directories . 24

3 License management . 25
3.1 License features . 25

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 2/121

4 Programming interfaces . 26
4.1 Visual Basic 6 . 26
4.2 C/C++ . 27
4.3 .NET . 28
4.3.1 Visual Basic . 29
4.3.2 C# . 30
4.3.3 Deployment . 30
4.3.4 Troubleshooting: TypeInitializationException . 31

5 User guide . 32
5.1 Overview of the API . 32
5.1.1 About the 3-Heights® PDF Security API . 32
5.2 About the API . 32
5.3 Encryption . 33
5.3.1 Encryption and how it works in PDF . 33
5.3.2 Owner password and user password . 33
5.3.3 Permission flags . 33
5.3.4 Encrypting a PDF document . 34
5.3.5 Reading an encrypted PDF document . 34
5.3.6 How secure is PDF encryption? . 34
5.4 Fonts . 35
5.4.1 Font cache . 35
5.5 Cryptographic provider . 35
5.5.1 PKCS#11 provider . 36

Configuration . 36
Interoperability support . 37
Selecting a certificate for signing . 37
Using PKCS#11 stores with missing issuer certificates . 38
PKCS#11 devices that contain private keys only . 38

5.5.2 Cryptographic suites . 39
5.6 Windows Cryptographic Provider . 40
5.6.1 Configuration . 40
5.6.2 Selecting a certificate for signing . 41
5.6.3 Certificates . 42
5.6.4 Qualified certificates . 44
5.6.5 Cryptographic suites . 44
5.7 myBica Digital Signing Service . 44
5.8 QuoVadis sealsign . 46
5.9 Swisscom All-in Signing Service . 47
5.9.1 General properties . 47
5.9.2 Provider session properties . 48
5.9.3 On-demand certificates . 48
5.9.4 Step-up authorization using Mobile-ID . 49
5.10 GlobalSign Digital Signing Service . 49
5.11 Custom signature handler . 51

6 Creating digital signatures . 52
6.1 Signing a PDF document . 52
6.2 Creating a preview of a signed document . 52
6.3 Creating a PAdES signature . 53
6.3.1 Create a PAdES-B-B signature . 54
6.3.2 Create a PAdES-B-T signature . 55

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 3/121

6.3.3 Create a PAdES-B-LT signature . 55
6.3.4 Create a PAdES-B-LTA signature or extend longevity of a signature . 56
6.4 Applying multiple signatures . 56
6.5 Creating a timestamp signature . 57
6.6 Creating a visual appearance of a signature . 58
6.7 Guidelines for mass signing . 58
6.7.1 Keep the session to the security device open for multiple sign operations 58
6.7.2 Signing concurrently using multiple threads . 58
6.7.3 Thread safety with a PKCS#11 provider . 59
6.8 Miscellaneous . 59
6.8.1 Caching of CRLs, OCSP, and timestamp reponses . 59
6.8.2 Using a proxy . 60
6.8.3 Configuring a proxy server and firewall . 60
6.8.4 Setting the signature build properties . 60

7 Validating digital signatures . 61
7.1 Validating a qualified electronic signature . 61
7.1.1 Trust chain . 61
7.1.2 Revocation information . 62
7.1.3 Timestamp . 63
7.2 Validating a PAdES LTV signature . 64
7.2.1 Trust chain . 64
7.2.2 Revocation information . 64
7.2.3 Timestamp . 65
7.2.4 LTV expiration date . 65
7.2.5 Other PAdES requirements . 65

8 Advanced guide . 66
8.1 Using the in-memory functions . 66

9 Stamping . 67
9.1 Stamp file syntax . 67
9.1.1 Stamp . 68

Coordinates . 70
Modify content of existing stamps . 70

9.1.2 Stamp content . 70
Text . 70

Variable text . 73
Images and geometric shapes . 74
Transformations . 75

9.2 Examples . 76
9.2.1 Example 1: Simple stamps . 76
9.2.2 Example 2: Modify “Simple Stamp” . 76
9.2.3 Example 3: Add watermark text diagonally across pages . 77
9.2.4 Example 4: Apply stamp to long edge of all pages . 78
9.2.5 Example 5: Stamp links . 79

10 Error handling . 80

11 Tracing . 81

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 4/121

12 Interface reference . 82
12.1 PdfSecure Interface . 82
12.1.1 AddDocMDPSignature . 82
12.1.2 AddPreparedSignature . 83
12.1.3 AddSignature . 83
12.1.4 AddSignatureField . 84
12.1.5 AddStamps, AddStampsMem . 84
12.1.6 AddTimeStampSignature . 84
12.1.7 AddValidationInformation . 84
12.1.8 AutoLinearize . 85
12.1.9 BeginSession . 86
12.1.10 Close . 86
12.1.11 ErrorCode . 86
12.1.12 ErrorMessage . 87
12.1.13 EndSession . 87
12.1.14 ForceEncryption . 87
12.1.15 ForceIncrementalUpdate . 87
12.1.16 ForceSignature . 88
12.1.17 GetPdf . 88
12.1.18 GetRevision, GetRevisionFile, GetRevisionStream . 88
12.1.19 GetMetadata . 89
12.1.20 GetSignature . 89
12.1.21 GetSignatureCount . 89
12.1.22 InfoEntry . 90
12.1.23 LicenseIsValid . 90
12.1.24 Linearize . 90
12.1.25 NoCache . 91
12.1.26 NoDSS . 91
12.1.27 Open . 91
12.1.28 OpenMem . 92
12.1.29 OpenStream . 92
12.1.30 PageCount . 93
12.1.31 ProductVersion . 93
12.1.32 RemoveLegacyStamps . 93
12.1.33 RevisionCount . 93
12.1.34 RemoveSignatureField . 94
12.1.35 SaveAs . 94
12.1.36 SaveInMemory . 96
12.1.37 SaveAsStream . 96
12.1.38 SetLicenseKey . 97
12.1.39 SetMetadata, SetMetadataStream . 97
12.1.40 SetSessionProperty . 97
12.1.41 SignatureCount . 97
12.1.42 SignPreparedSignature . 98
12.1.43 SignSignatureField . 98
12.1.44 Terminate . 98
12.1.45 TestSession . 99
12.1.46 ValidateSignature . 99
12.2 PdfSignature Interface . 100
12.2.1 ContactInfo . 100
12.2.2 Contents . 100
12.2.3 Date . 100

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 5/121

12.2.4 DocMdpPermissions . 101
12.2.5 DocumentHasBeenModified . 101
12.2.6 Email . 101
12.2.7 EmbedRevocationInfo . 102
12.2.8 FillColor . 102
12.2.9 FieldName . 103
12.2.10 Filter . 103
12.2.11 FontName1 . 103
12.2.12 FontName2 . 104
12.2.13 Font1Mem . 104
12.2.14 Font2Mem . 104
12.2.15 FontSize1 . 104
12.2.16 FontSize2 . 104
12.2.17 HasSignature . 104
12.2.18 ImageFileName . 105
12.2.19 Issuer . 105
12.2.20 LineWidth . 105
12.2.21 Location . 105
12.2.22 Name . 106
12.2.23 PageNo . 106
12.2.24 Provider . 106
12.2.25 ProxyURL . 107
12.2.26 ProxyCredentials . 107
12.2.27 Reason . 107
12.2.28 Rect . 107
12.2.29 Revision . 108
12.2.30 SerialNumber . 108
12.2.31 SignerFingerprint . 108
12.2.32 SignerFingerprintStr . 108
12.2.33 Store . 109
12.2.34 StoreLocation . 109
12.2.35 StrokeColor . 109
12.2.36 SubFilter . 109
12.2.37 Text1 . 110
12.2.38 Text1Color . 110
12.2.39 Text2 . 110
12.2.40 Text2Color . 111
12.2.41 TimeStampCredentials . 111
12.2.42 TimeStampFingerprint . 111
12.2.43 TimeStampURL . 111
12.2.44 UserData . 112
12.3 Enumerations . 112
12.3.1 TPDFErrorCode Enumeration . 112
12.3.2 TPDFPermission Enumeration . 115

13 Version history . 117
13.1 Changes in versions 6.19–6.27 . 117
13.2 Changes in versions 6.13–6.18 . 117
13.3 Changes in versions 6.1–6.12 . 117
13.4 Changes in version 5 . 118
13.5 Changes in version 4.12 . 118
13.6 Changes in version 4.11 . 118

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 6/121

13.7 Changes in version 4.10 . 119
13.8 Changes in version 4.9 . 120
13.9 Changes in version 4.8 . 120

14 Licensing, copyright, and contact . 121

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 7/121

1 Introduction

1.1 Description

The 3-Heights® PDF Security API enables the application of digital signatures to PDF documents and their subse
quent protection through setting passwords and user authorizations.

Both standard signatures and qualified signatures that use signature cards (“smartcards”, “USB tokens”, “HSM”) can
be used.

PDF documents used in professional circumstances contain important information that needs to be protected
against misuse and unintentional alteration. This is achieved by protecting PDF documents through encryption
and user authorization rights.

PDF

PDF

List

Certificate

Time Server

OCSP Server

PDF Security Tool

Parameters

Decrypt

Encrypt

Verify Signature

D
ig

ita
l

Si
gn

at
ur

e

PDFPDFPDF

When exchanging electronic documents, the ability to ascertain that a document is authentic and has not been
manipulated on its way from sender to recipient is of particular importance. This is only achievable through the use
of electronic signatures.

Through its interfaces (C, Java, .NET, COM) and thanks to its flexibility, developers can integrate the 3-Heights® PDF
Security API in virtually any application.

1.2 Functions

The 3-Heights® PDF Security API enables users to encrypt and—if the passwords are known—decrypt PDF docu
ments. The tool can set and cancel all known PDF user authorizations. For instance, it can set an owner password
so that only authorized users can edit and change the document. A user password ensures that only authorized
users have access to the document’s content. The tool’s signature module allows the user to apply, read, and verify

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 8/121

both classic digital signatures and MDP (modification detection and prevention) signatures. The visibility and visual
appearance of digital signatures can be adapted to suit requirements. The tool also supports customized signature
handlers and types.

1.2.1 Features

Apply simple, advanced, and qualified electronic signatures
PDF/A conforming signatures
Support European signature standards
Signature types

Document signatures to “digitally sign” documents
Modification detection & prevention (MDP) signatures to “certify” documents
Document timestamp signatures to “timestamp” documents

Apply PAdES-B-LTA (longterm availability and integrity of validation material) and PAdESLTV (LongTerm
Validation) signatures

Embedded trust chain, timestamp, and revocation information (OCSP, CRL)
Extend the longevity of existing signatures
Add signature validation material to the document security store (DSS)

Add an optional visual appearance of the signature (page, size, color, position, text, background image, etc.)
Cache OCSP, CRL, and other data for masssigning
Various types of cryptographic providers

Windows certificate store
Hardware such as hardware security module (HSM), smartcards, and USB tokens
Online signature services

myBica Digital Signing Service
Swisscom All-in Signing Service
GlobalSign Digital Signing Service
QuoVadis sealsign

Custom signature handler plugin interface
Masssigning of documents
Multiple signatures

Extract digital signatures
Validate digital signatures
Remove digital signatures
Extract signed version (revision) of document

Encrypt and decrypt PDF documents
Set document restrictions, including:

Print document
Modify document content
Extract or copy content
Add comments
Fill in form fields
Extract content for accessibility
Assemble documents
Print in high resolution

Set crypt and stream filters
Set encryption strength
Set owner and user password

Stamping
Stamp text, images, or vector graphics
Add hyperlinks

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 9/121

Add PDF/A conforming stamps
Modify existing stamps
Stamping of signed documents preserves existing signatures
Stamp on layer

Set document metadata
Optimize for the web (linearize) (not for PDF 2.0)
Read input from and write output document to file, memory, or stream

1.2.2 Formats

Input formats

PDF 1.x (PDF 1.0, …, PDF 1.7)
PDF 2.0
PDF/A-1, PDF/A-2, PDF/A-3
FDF

Output formats

PDF 1.x (PDF 1.0, …, PDF 1.7)
PDF 2.0
PDF/A-1, PDF/A-2, PDF/A-3

1.2.3 Conformance

Standards:

ISO 32000-1 (PDF 1.7)
ISO 32000-2 (PDF 2.0)
ISO 19005-1 (PDF/A-1)
ISO 19005-2 (PDF/A-2)
ISO 19005-3 (PDF/A-3)
PAdES (ETSI EN 319 142) signature levels B-B, B-T, B-LT, B-LTA, CMS
Legacy PAdES baseline signature (ETSI TS 103 172) B-Level, T-Level, LT-Level, and LTALevel
Legacy PAdES (ETSI TS 102 778) Part 2 (PAdES Basic), Part 3 (PAdESBES), and Part 4 (PAdESLTV, LongTerm Vali
dation)
Longterm signature profiles for PAdES (ISO 14533-3)
Cryptographic Suites (ETSI TS 119 312)

1.3 Interfaces

The following interfaces are available:

C
Java
.NET Framework
.NET Core1

COM

1 Limited supported OS versions. Operating systems

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 10/121

1.4 Operating systems

The 3-Heights® PDF Security API is available for the following operating systems:

Windows Client 7+ | x86 and x64
Windows Server 2008, 2008 R2, 2012, 2012 R2, 2016, 2019, 2022 | x86 and x64
Linux:

Red Hat, CentOS, Oracle Linux 7+ | x64
Fedora 29+ | x64
Debian 8+ | x64
Other: Linux kernel 2.6+, GCC toolset 4.8+ | x64

macOS 10.10+ | x64

‘+’ indicates the minimum supported version.

1.5 How to best read this manual

If you are reading this manual for the first time and would like to evaluate the software, the following steps are
suggested:

1. Read the Introduction chapter to verify this product meets your requirements.
2. Identify what interface your programming language uses.
3. Read and follow the instructions in Installation and deployment.
4. In ZIP archive, find your programming language. Please note that not every language is covered in this manual.

For most programming languages, there is sample code available. To start, it is generally best to refer to these
samples rather than writing code from scratch.

5. (Optional) Read the User guide for general information about the API. Read the Interface reference for specific
information about the functions of the API.

1.6 Digital signatures

1.6.1 Overview

Digital signature is a large and slightly complex topic. This chapter gives an introduction to digital signatures and
describes how the 3-Heights® PDF Security API is used to apply them. It does however not describe all the technical
details.

1.6.2 Terminology

Digital signature is a cryptographic technique of calculating a number (a digital signature) for a message. Cre
ating a digital signature requires a private key from a certificate. Validating a digital signature and its authorship
requires a public key. Digital Signature is a technical term.

Electronic signature is a set of electronic data that is merged or linked to other electronic data in order to
authenticate it. Electronic Signatures can be created by means of a digital signature or other techniques. Electronic
Signature is a legal term.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 11/121

Abbreviations

CA Certification Authority

CMS Cryptographic Message Syntax

CRL Certificate Revocation List

CSP Cryptographic Service Provider

HSM Hardware Security Module

OCSP Online Certificate Status Protocol

PKCS Public Key Cryptography Standards

QES Qualified electronic signature

TSA Timestamp Authority

TSP Timestamp Protocol

1.6.3 Why digitally signing?

The idea of applying a digital signature in PDF is very similar to a handwritten signature: A person reads a document
and signs it with its name. In addition to the name, the signature can contain further optional information, such as
the date and location. A valid electronic signature is a section of data that can be used to:

Ensure the integrity of the document
Authenticate the signer of the document
Prove existence of file prior to date (timestamp)

Digitally signing a document requires a certificate and its private key. How to access and use a certificate is described
in Cryptographic provider.

In a PDF document, a digital signature consists of two parts:

A PDF related part This part consists of the PDF objects required to embed the signature into the PDF document.
This part depends on the signature type (document signature, MDP signature - see explanation). Information
such as name of the signer, reason, date, and location is stored here. The signature may optionally have a visual
appearance on a page of the PDF document, which can contain text, graphics, and images.

This part of the signature is entirely created by the 3-Heights® PDF Security API.

A cryptographic part A digital signature is based on a cryptographic checksum (hash value) calculated from
the content of the document that is being signed. If the document is modified at a later time, the computed
hash value is no longer correct and the signature becomes invalid, i.e. the validation fails and reports that the
document has been modified since the signature was applied. Only the owner of the certificate and its private
key is able to sign the document. However, anybody can verify the signature with the public key contained in
the certificate.

This part of the signature requires a cryptographic provider for some cryptographic data and algorithms.

The 3-Heights® PDF Security API supports the following types of digital signatures:

Document signature A document signature type digital signature checks the integrity of the signed part of the
document and authenticates the signer’s identity. One or more document signatures can be applied. A signed

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 12/121

document can be modified and saved by incremental updates. The state of the document can be re-created as
it existed at the time of signing.

MDP signature A modification detection and prevention signature detects disallowed changes specified by the
author. A document can contain only one MDP signature, which must be the first in the document. Other types
of signatures may be present.

Document timestamp signature A timestamp signature provides evidence that the document existed at a specific
time and protects the document’s integrity. One or more document timestamp signatures can be applied. A
signed document can be modified and saved by incremental updates.

1.6.4 What is an electronic signature?

There are different types of electronic signatures, which normally are defined by national laws, and therefore are
different for different countries. The type of electronic signatures required in a certain process is usually defined by
national laws. Quite advanced in this manner are Germanspeaking countries where such laws and an established
terminology exist. The English terminology is basically a translation from German.

Three types of electronic signatures are distinguished:

Simple Electronic Signature - “Einfache Elektronische Signatur”
Advanced electronic signature (AdES) - “Fortgeschrittene Elektronische Signatur”
Qualified electronic signature (QES) - “Qualifizierte Elektronische Signatur”

All applied digital signatures conform to PDF/A and PAdES.

Simple electronic signature

A simple electronic signature requires any certificate that can be used for digital signing. The easiest way to retrieve
a certificate, which meets that requirement, is to create a selfsigned certificate. Selfsigned means it is signed by
its owner. Therefore, the issuer of the certificate and the approver of the legitimacy of a document signed by this
certificate is the same person.

Example:

Anyone can create a selfsigned certificate issued by “Peter Pan” and issued to “Peter Pan”. Using this certificate, a
person can sign in the name of “Peter Pan”.

If a PDF document is signed with a simple electronic signature and the document is changed after the signature had
been applied, the signature becomes invalid. However, the person who applied the changes could, at the same time
(maliciously), also remove the existing simple electronic signature and—after the changes—apply a new, equally
looking Simple Electronic Signature and falsify its date. A simple electronic signature is neither strong enough to
ensure the integrity of the document nor to authenticate the signer.

This drawback can overcome using an advanced or qualified electronic signature.

Advanced electronic signature

Requirements for advanced certificates and signatures vary depending on the country where they are issued and
used.

An advanced electronic signature is based on an advanced certificate that is issued by a recognized certificate au
thority (CA) for the country, such as VeriSign, SwissSign, QuoVadis. To receive an advanced certificate, its owner must
prove its identity, e.g. by physically visiting the CA and presenting its passport. The owner can be an individual or
legal person or entity.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 13/121

An advanced certificate contains the name of the owner, the name of the CA, its period of validity, and other infor
mation.

The private key of the certificate is protected by a PIN, which is only known to its owner.

This brings the following advantages over a simple electronic signature:

The signature authenticates the signer.
The signature ensures the integrity of the signed content.

Qualified electronic signature

Requirements for qualified certificates and signatures vary depending on the country where they are issued and
used.

A qualified electronic signature is similar to an advanced electronic signature, but has higher requirements. The
main differences are:

It is based on a qualified certificate, which is provided as a hardware token (USB stick, smart card).
For every signature, it is required to enter the PIN code manually. This means that only one signature can be
applied at a time.
Certificate revocation information (OCSP/CRL) can be acquired from an online service. The response (valid, re
voked, etc.) must be embedded in the signature.
A timestamp (TSP) that is acquired from a trusted time server (TSA) may be required.

This brings the following advantages over an advanced electronic signature:

The signature ensures the certificate was valid at the time when the document was signed (due to the embed
ding of the OCSP/CRL response).
The signature ensures the integrity of the time of signing (due to the embedding of the timestamp).
Legal processes that require a QES are supported.

Note: A timestamp can be added to any type of signature. OCSP/CRL responses
are also available for some advanced certificates.

1.6.5 Creating electronic signatures

This is a simple example of how to create an electronic document signature. More detailed examples and examples
for other types of electronic signatures can be found in Creating digital signatures.

Preparation steps

1. Identify whether an Advanced electronic signature or a Qualified electronic signature is required. For most au
tomated processes, an advanced signature is sufficient.

2. Identify regulatory requirements regarding the content and lifecycle of the signature:
Is a timestamp required to prove that the signature itself existed at a certain date and time?
Should validation information be embedded to allow the signature to be validated long time after its gener
ation?
Should the integrity of the validation material be protected?
Is a specific signature encoding required?

These requirements (or regulatory requirements) define the signature level that must be used.
3. Acquire a corresponding certificate from a CA.

© PDF Tools AG -- Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 14/121

For automated processes, it is recommended you use a HSM, an online signing service, or soft certificates. Other
hardware such as USB tokens or smart cards are often cheaper, but limited to local interactive singleuser appli
cations.
When using an online signing service, ensure that it supports the required signature encoding.

4. Set up and configure the certificate’s Cryptographic provider.
In case the certificate resides on hardware such as an USB token or a smart card, the required middleware
(driver) needs to be installed.
In case the certificate is a soft certificate, it must be imported into the certificate store of a cryptographic
provider.

5. Optional: Acquire access to a trusted time server (TSA) (preferably from the CA of your signing certificate).
6. Optional: Ensure your input documents conform to the PDF/A standard.

It is recommended to sign PDF/A documents only, because this ensures that the file’s visual appearance is well
defined, as it can be reproduced flawlessly and authentically in any environment. Furthermore, PDF/A confor
mance is typically required if the file is to be archived. Because signed files cannot be converted to PDF/A without
breaking its signatures, files must be converted before signing.

Note: A detailed guidance on the use of standards for signature creation can be
found in the technical report ETSI TR 119 100.

Application of the signature

Apply the signature by providing the following information:

1. The Cryptographic provider where the certificate is located
2. Values for the selection of the signing certificate (e.g. the name of the certificate)
3. Optional: Timestamp service URL (e.g. “http://server.mydomain.com:80/tsa”)
4. Optional: Timestamp service credentials (e.g. username:password)
5. Optional: Add validation information
6. Optional: Visual appearance of the signature on a page of the document (e.g. an image).

Example: Steps to add an electronic document signature

The 3-Heights® PDF Security API applies PDF/A conforming signatures. This means if a PDF/A document is digitally
signed, it retains PDF/A conformance.

To add an electronic document signature with the 3-Heights® PDF Security API, the following steps need to be done:

1. Create a new Signature object
2. Provide the name of the certificate to be used, as value of the Signature’s name. The name of the certificate

corresponds to the value “Issued to:”.
3. If the certificate’s private key is PIN protected, pass the PIN in the provider configuration.
4. Set additional parameters, such as the reason why the signature is applied, etc.

In C#, the four steps above look like this:

using (Secure doc = new Secure())
{
 if (!doc.Open("input.pdf", ""))
 throw new Exception("Document cannot be opened: " + doc.ErrorMessage);

 using (Signature signature = new Signature())
 {
 signature.Name = "Philip Renggli";
 signature.Provider = "cvp11.dll;0;secret-pin";

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 15/121

 signature.Reason = "I reviewed the document"; // optional
 signature.TimeStampURL = "http://server.mydomain.com:80/tsa"; // optional
 signature.Rect = new PDFRect(10, 10, 210, 60); // optional

 doc.AddSignature(signature);
 }

 if (!doc.SaveAs("output.pdf", "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Unable to sign document: " + doc.ErrorMessage);

 doc.Close();
}

The visual appearance of the digital signature on a page of the resulting output document looks as shown below:

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 16/121

2 Installation and deployment

2.1 Windows

The 3-Heights® PDF Security API comes as a ZIP archive or as a NuGet package.

To install the software, proceed as follows:

1. You need administrator rights to install this software.
2. Log in to your download account at https://www.pdf-tools.com. Select the product “PDF Security

API”. If you have no active downloads available or cannot log in, please contact pdfsales@pdftools.com
for assistance.
You can find different versions of the product available. Download the version that is selected by default. You
can select a different version.
The product comes as aZIP archive containing all files, or as aNuGet package containing all files for development
in .NET.
There is a 32 and a 64-bit version of the product available. While the 32-bit version runs on both 32 and 64-bit
platforms, the 64-bit version runs on 64-bit platforms only. The ZIP archive as well as the NuGet package contain
both the 32-bit and the 64-bit version of the product.

3. If you are using the ZIP archive, uU nzip the archive to a local folder, e.g. C:\Program Files\PDF Tools
AG\.
This creates the following subdirectories (see also ZIP archive):

Subdirectory Description

bin Runtime executable binaries

doc Documentation

include Header files to include in your C/C++ project

jar Java archive files for Java components

lib Object file library to include in your C/C++ project

samples Sample programs in various programming languages

4. The usage of the NuGet package is described in section NuGet package.
5. (Optional) Register your license key using the License management.
6. Identify the interface you are using. Perform the specific installation steps for that interface described in Inter

facespecific installation steps.
7. Ensure the cache directory exists as described in Special directories.
8. If you want to sign documents, set up your cryptographic provider as described in Cryptographic provider.
9. If you want to stamp text, set up the fonts required as described in Fonts.

2.2 Linux and macOS

This section describes installation steps required on Linux or macOS.

The Linux and macOS version of the 3-Heights® PDF Security API provides two interfaces:

Java interface
Native C interface

https://www.pdf-tools.com
mailto:pdfsales@pdf-tools.com

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 17/121

Here is an overview of the files that come with the 3-Heights® PDF Security API:

File description

Name Description

bin/x64/libPdfSecureAPI.so Shared library that contains the main functionality. The file’s extension
differs on macOS, (.dylib instead of .so).

doc/*.* Documentation

include/*.h Header files to include in your C/C++ project

jar/SECA.jar Java API archive

samples Example code

2.2.1 Linux

1. Unpack the archive in an installation directory, e.g. /opt/pdf-tools.com/
2. Verify that the GNU shared libraries required by the product are available on your system:

ldd libPdfSecureAPI.so

If the previous step reports any missing libraries, you have two options:
a. Download an archive that is linked to a different version of the GNU shared libraries and verify whether they

are available on your system. Use any version whose requirements are met. Note that this option is not
available for all platforms.

b. Use your system’s package manager to install the missing libraries. It usually suffices to install the package
libstdc++6.

3. Create a link to the shared library from one of the standard library directories, e.g.

ln -s /opt/pdf-tools.com/bin/x64/libPdfSecureAPI.so /usr/lib

4. Optionally, register your license key using the license manager.
5. Identify the interface you are using. Perform the specific installation steps for that interface described in Inter

facespecific installation steps.
6. Ensure the cache directory exists as described in Special directories.
7. If you want to sign documents, set up your cryptographic provider as described in Cryptographic provider.
8. If you want to stamp text, set up the fonts required as described in Fonts.

2.2.2 macOS

The shared library must have the extension .jnilib for use with Java. Create a file link for this purpose by using
the following command:

ln libPdfSecureAPI.dylib libPdfSecureAPI.jnilib

TechnoteLicenseKeys.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 18/121

2.3 ZIP archive

The 3-Heights® PDF Security API provides four different interfaces. The installation and deployment of the software
depend on the interface you are using. The table below shows the supported interfaces and some of the program
ming languages that can be used.

Interface Programming languages

.NET The MS software platform .NET can be used with any .NET capable programming language such
as:

C#
VB .NET
J#
others

For a convenient way to use this interface, see NuGet package.

Java The Java interface is available on all platforms.

COM The component object model (COM) interface can be used with any COMcapable programming
language, such as:

MS Visual Basic
MS Office Products such as Access or Excel (VBA)
C++
VBScript
others

This interface is available in the Windows version only.

C The native C interface is for use with C and C++. This interface is available on all platforms.

2.3.1 Development

The software development kit (SDK) contains all files that are used for developing the software. The role of each file
in each of the four different interfaces is shown in table Files for development. The files are split in four categories:

Req. The file is required for this interface.

Opt. The file is optional. See also the File description table to identify the files are required for your application.

Doc. The file is for documentation only.

Empty field An empty field indicates this file is not used for this particular interface.

Files for development

Name .NET Java COM C

bin\‹platform›\PdfSecureAPI.dll Req. Req. Req. Req.

bin*NET.dll Req.

bin*NET.xml Doc.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 19/121

Files for development

Name .NET Java COM C

doc*.pdf Doc. Doc. Doc. Doc.

doc\PdfSecureAPI.idl Doc.

doc\javadoc*.* Doc.

include\pdfsecureapi_c.h Req.

include*.* Opt.

jar\SECA.jar Req.

lib\‹platform›\PdfSecureAPI.lib Req.2

samples*.* Doc. Doc. Doc. Doc.

The purpose of the most important distributed files is described in the File description table.

File description

Name Description

bin\‹platform›\PdfSecureAPI.dll DLL that contains the main functionality (required), where
‹platform› is either Win32 or x64 for the 23-bit or the 64-bit
library, respectively.

bin*NET.dll .NET assemblies are required when using the .NET interface.
The files bin*NET.xml contain the corresponding XML
documentation for MS Visual Studio.

doc*.* Documentation

include*.* Files to include in your C / C++ project

lib\‹platform›\PdfSecureAPI.lib On Windows operating systems, the object file library needs to
be linked to the C/C++ project.

jar\SECA.jar Java API archive

samples*.* Sample programs in different programming languages

2.3.2 Deployment

For the deployment of the software, only a subset of the files are required. The table below shows the files that are
required (Req.), optional (Opt.) or not used (empty field) for the four different interfaces.

2 Not required for Linux or macOS.
3 These files must reside in the same directory as PdfSecureAPI.dll.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 20/121

Files for deployment

Name .NET Java COM C

bin\‹platform›\PdfSecureAPI.dll Req. Req. Req. Req.

bin*NET.dll Req.

jar\SECA.jar Req.

The deployment of an application works as described below:

1. Identify the required files from your developed application (this may also include color profiles).
2. Identify all files that are required by your developed application.
3. Include all these files in an installation routine such as an MSI file or a simple batch script.
4. Perform any interfacespecific actions (e.g. registering when using the COM interface).

Example: This is a very simple example of how a COM application written in Visual Basic 6 could be deployed.

1. The developed and compiled application consists of the file securer.exe. Color profiles are not used.
2. The application uses the COM interface and is distributed on Windows only.

The main DLL PdfSecureAPI.dllmust be distributed.
3. All files are copied to the target location using a batch script. This script contains the following commands:

copy securer.exe %targetlocation%\.
copy PdfSecureAPI.dll %targetlocation%\.

4. For COM, the main DLL needs to be registered in silent mode (/s) on the target system. This step requires Power
User privileges and is added to the batch script.

regsvr32 /s %targetlocation%\PdfSecureAPI.dll.

2.4 NuGet package

NuGet is a package manager that lets you integrate libraries for software development in .NET. The NuGet package
for the 3-Heights® PDF Security API contains all the libraries needed, both managed and native.

Installation

The package PdfTools.PdfSecure 6.27.6 is available on nuget.org. Rightclick on your .NET project in Visual
Studio and select “Manage NuGet Packages...”. Finally, select the package source “nuget.org” and navigate to the
package PdfTools.PdfSecure 6.27.6.

Development

The package PdfTools.PdfSecure 6.27.6 contains .NET libraries with versions .NET Standard 1.1, .NET Stan
dard 2.0, and .NET Framework 2.0, and native libraries for Windows, macOS, and Linux.

The required native libraries are loaded automatically. All project platforms are supported, including “AnyCPU”.

To use the software, you must first install a license key for the 3-Heights® PDF Security API. To do this, you have to
download the product kit and use the license manager in it. See also License management.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 21/121

Note: This NuGet package is only supported on a subset of the operating sys
tems supported by .NET Core. See also Operating systems.

2.5 Interfacespecific installation steps

2.5.1 COM interface

Registration

Before you can use the 3-Heights® PDF Security API component in your COM application program, you have to
register the component using the regsvr32.exe program that is provided with the Windows operating system.
The following command shows how to register the PdfSecureAPI.dll. In Windows Vista and later, the command
needs to be executed from an administrator shell.

regsvr32 "C:\Program Files\PDF Tools AG\bin\‹platform›\PdfSecureAPI.dll"

Where ‹platform› is Win32 for the 32-bit and x64 for the 64-bit version.

If you are using a 64-bit operating system and would like to register the 32-bit version of the 3-Heights® PDF Se
curity API, you need to use the regsvr32 from the directory %SystemRoot%\SysWOW64 instead of %System
Root%\System32.4

If the registration process succeeds, a corresponding dialog window is displayed. The registration can also be done
silently (e.g. for deployment) using the switch /s.

Other files

The other DLLs do not need to be registered, but for simplicity, it is suggested that they reside in the same directory
as the PdfSecureAPI.dll.

2.5.2 Java interface

The 3-Heights® PDF Security API requires Java version 7 or higher.

For compilation and execution

When using the Java interface, the Java wrapper jar\SECA.jar needs to be on the CLASSPATH. You can do this
by either adding it to the environment variable CLASSPATH, or by specifying it using the switch -classpath:

javac -classpath ".;C:\Program Files\PDF Tools AG\jar\SECA.jar" ^
 sampleApplication.java

For execution

4 Otherwise, you get the following message: LoadLibrary("PdfSecureAPI.dll") failed - The specified module could not
be found.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 22/121

Additionally, the library PdfSecureAPI.dll needs be in one of the system’s library directories5 or added to the
Java system property java.library.path. You can add the library by either adding it dynamically at program
startup before using the API, or by specifying it using the switch -Djava.library.path when starting the
Java VM. Choose the correct subdirectory (x64 or Win32 on Windows) depending on the platform of the Java VM6.

java -classpath ".;C:\Program Files\PDF Tools AG\SECA.jar" ^
 "-Djava.library.path=C:\Program Files\PDF Tools AG\bin\x64" sampleApplication

On Linux or macOS, the path separator usually is a colon and hence the above changes to something like:

... -classpath ".:/path/to/SECA.jar" ...

2.5.3 .NET interface

The 3-Heights® PDF Security API does not provide a pure .NET solution. Instead, it consists of a native library and
.NET assemblies, which call the native library. This has to be accounted for when installing and deploying the tool.

It is recommended that you use the NuGet package. This ensures the correct handling of both the .NET assemblies
and the native library.

Alternatively, the files in the ZIP archive can be used directly in a Visual Studio project targeting .NET Framework 2.0
or later. To achieve this, proceed as follows:

The .NET assemblies (*NET.dll) are added as references to the project; they are needed at compile time. PdfSe
cureAPI.dll is not a .NET assembly, but a native library. It is not added as a reference to the project. Instead, it is
loaded during execution of the application.

For the operating system to find and successfully load the native library PdfSecureAPI.dll, it must match the
executing application’s bitness (32-bit versus 64-bit) and it must reside in either of the following directories:

In the same directory as the application that uses the library
In a subdirectory win-x86 or win-x64 for 32-bit or 64-bit applications, respectively
In a directory that is listed in the PATH environment variable

In Visual Studio, when using the platforms “x86” or “x64”, you can do this by adding the 32-bit or 64-bit PdfSe
cureAPI.dll, respectively, as an “existing item” to the project, and setting its property “Copy to output directory”
to true. When using the “AnyCPU” platform, make sure, by some other means, that both the 32-bit and the 64-bit
PdfSecureAPI.dll are copied to subdirectories win-x86 and win-x46 of the output directory, respectively.

2.5.4 C interface

The header file pdfsecureapi_c.h needs to be included in the C/C++ program.
On Windows operating systems, the library PdfSecureAPI.lib needs to be linked to the project.
The dynamic link library PdfSecureAPI.dll needs to be in a path of executables (e.g. on the environment
variable %PATH%).

2.6 Uninstall, Install a new version

If you have used the ZIP file for the installation, undo all the steps done during installation, e.g. de-register using
regsvr32.exe /u, delete all files, etc.

5 On Windows defined by the environment variable PATH, and on Linux defined by LD_LIBRARY_PATH.
6 If the wrong data model is used, there is an error message similar to this: “Can't load IA 32-bit .dll on a AMD 64-bit platform”

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 23/121

Installing a new version does not require you to previously uninstall the old version. The files of the old version can
directly be overwritten with the new version.

2.7 Note about the evaluation license

With the evaluation license, the 3-Heights® PDF Security API automatically adds a watermark to the output files.

2.8 Special directories

2.8.1 Directory for temporary files

This directory for temporary files is used for data specific to one instance of a program. The data is not shared
between different invocations and is deleted after termination of the program.

The directory is determined as follows. The product checks for the existence of environment variables in the follow
ing order and uses the first path found:

Windows

1. The path specified by the %TMP% environment variable
2. The path specified by the %TEMP% environment variable
3. The path specified by the %USERPROFILE% environment variable
4. The Windows directory

Linux and macOS

1. The path specified by the $PDFTMPDIR environment variable
2. The path specified by the $TMP environment variable
3. The /tmp directory

2.8.2 Cache directory

The cache directory is used for data that is persistent and shared between different invocations of a program. The
actual caches are created in subdirectories. The content of this directory can safely be deleted to clean all caches.

This directory should be writable by the application; otherwise, caches cannot be created or updated and perfor
mance degrades significantly.

Windows

If the user has a profile:
%LOCAL_APPDATA%\PDF Tools AG\Caches
If the user has no profile:
<TempDirectory>\PDF Tools AG\Caches

Linux and macOS

If the user has a home directory:
~/.pdf-tools/Caches
If the user has no home directory:
<TempDirectory>/pdf-tools/Caches

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 24/121

where <TempDirectory> refers to the Directory for temporary files.

2.8.3 Font directories

The location of the font directories depends on the operating system. Font directories are traversed recursively in
the order as specified below.

If two fonts with the same name are found, the latter one takes precedence, i.e. user fonts always take precedence
over system fonts.

Windows

1. %SystemRoot%\Fonts
2. User fonts listed in the registry key \HKEY_CURRENT_USER\Software\Microsoft\Windows NT\Cur

rentVersion\Fonts. This includes user specific fonts from C:\Users\<user>\AppData\Local\Mi
crosoft\Windows\Fonts and app specific fonts from C:\Program Files\WindowsApps

3. Fonts directory, which must be a direct subdirectory of where PdfSecureAPI.dll resides.

macOS

1. /System/Library/Fonts
2. /Library/Fonts

Linux

1. /usr/share/fonts
2. /usr/local/share/fonts
3. ~/.fonts
4. $PDFFONTDIR or /usr/lib/X11/fonts/Type1

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 25/121

3 License management

The 3-Heights® PDF Security API requires a valid license in order to run correctly. If no license key is set or the license
is not valid, then most of the interface elements documented in Interface reference fail with an error code and error
message indicating the reason.

More information about license management is available in the license key technote.

3.1 License features

The functionality of the 3-Heights® PDF Security API contains two areas to which the following license features are
assigned:

Signature Create, validate, and enhance signatures.

Stamping Apply and modify stamps.

A license can include an arbitrary set of these features. The presence of any feature in a given license key can be
checked in the license manager. The Interface reference specifies in more detail which functions are included in
which license features.

TechNoteLicenseKeys3Heights.pdf
TechnoteLicenseKeys.pdf

© PDF Tools AG -- Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 26/121

4 Programming interfaces

4.1 Visual Basic 6

After installing the 3-Heights® PDF Security API and registering the COM interface (see chapter Installation and
deployment), you find a Visual Basic 6 example PdfSecureAPI.vbp in the directory samples/VB/. You can
either use this sample as a base for an application, or you can start from scratch.

If you start from scratch, perform these steps:

1. First create a new StandardExe Visual Basic 6 project. Then include the 3-Heights® PDF Security API component
to your project.

2. Draw a new Command Button and optionally, rename it if you like.
3. Doubleclick the command button and insert the few lines of code below. All that you need to change is the

path of the file name.

Private Sub Command1_Click()
 Dim Secure As New PDFSECUREAPILib.PdfSecure
 Secure.Open "C:\input.pdf", ""
 Secure.SaveAs "C:\output.pdf", "", "pwd", ePermPrint, 40
 Secure.Close
End Sub

And that’s all—four lines of code. Create the object, open the input file, create the output file with no user password,
owner password “owner”, allow printing, and use 40 bit encryption key.

Example: More advanced

The following Visual Basic 6 sample assumes an interface with:

Text fields (txt*) for the input and output file names, as well as the passwords.
Check boxes (chk*) with a value to be set to 0 or 1 for all the permission flags.

Private Sub CreateOutput_Click()
 Dim doc As New PDFSECUREAPILib.PdfSecure

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 27/121

 Dim iPerm As Integer
 done = doc.Open(txtInput.Text, txtPwd.Text)
 ' Open the input fil
 If Not done Then
 If doc.ErrorCode = PDF_E_PASSWORD Then
 MsgBox "Input file is encrypted and Password not correct."
 Else
 MsgBox "Couldn't open input file."
 End If
 Exit Sub
 End If
 ' Set the permissions
 iPerm = chkPrint.Value * ePermPrint _
 + chkModify.Value * ePermModify _
 + chkCopy.Value * ePermCopy _
 + chkAnnot.Value * ePermAnnotate _
 + chkFill.Value * ePermFillForms _
 + chkExtr.Value * ePermSupportDisabilities _
 + chkAssemble.Value * ePermAssemble _
 + chkDPrint * ePermDigitalPrint
 iKey = 128
 ' Save the output file
 If Not doc.SaveAs(txtOutput.Text, txtUser.Text, txtOwner.Text, iPerm, iKey)
 Then
 MsgBox "Output file could not be created."
 End If
 done = doc.Close
End Sub

4.2 C/C++

To use the 3-Heights® PDF Security API in a C project, the following steps should be done. (Note: Steps and screen
shots are specifically described for the MS Studio 6)

1. Add the header files pdfsecureapi_c.h and pdfsecuritydecl.h to the include directories.
2. Link to the object file library. (Windows: PdfSecureAPI.lib)

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 28/121

3. Add the path where the dynamic link library PdfSecureAPI.dll resides to the “Executable files directories”.
For example, as shown in the screenshot below. In most cases, it suffices to simply add it to the environment
variable Path.

There is a C sample available within the ZIP archive of the evaluation and release version that shows how to decrypt
and encrypt a PDF document, as well as how to add a digital signature. The C sample below is much simpler and
does not add a digital signature.

Before the C interface can be used to create objects, it must be initialized once. This is done usingPdfSecureIni
tialize, to un-initialize use PdfSecureUnInitialize. Other than that, equal call sequences as in the COM
interface can be used.

#include <stdio.h>
#include "pdfsecureapi_c.h"
#include "pdfsecuritydecl.h"
int main(int argc, char* argv[])
{
 TPdfSecure* pPdfSecure;
 PdfSecureInitialize();

 pPdfSecure = PdfSecureCreateObject();
 PdfSecureOpen(pPdfSecure, argv[1], "");
 PdfSecureSaveAsA(pPdfSecure, argv[2], "", "pwd", ePermPrint, 128, "", "");
 PdfSecureClose(pPdfSecure);

 PdfSecureDestroyObject(pPdfSecure);
 PdfSecureUnInitialize();
 return 0;
}

4.3 .NET

There should be at least one .NET sample for MS Visual Studio available in the ZIP archive of the Windows version of
the 3-Heights® PDF Security API. The easiest to quickly start is to refer to this sample.

To create a new project from scratch, perform the following steps:

1. Start Visual Studio and create a new C# or VB project.
2. Add references to the NuGet package PdfTools.PdfSecure 6.27.6, as described in NuGet package.

© PDF Tools AG -- Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 29/121

3. Import namespaces (Note: This step is optional, but useful.)
4. Write your code.

Steps 3 and 4 are shown separately for C# and Visual Basic.

4.3.1 Visual Basic

3. Doubleclick “My Project” to view its properties. On the left hand side, select the menu “References”. The .NET as
semblies you added before should show up in the upper window. In the lower window, import the namespaces
Pdftools.Pdf, and Pdftools.PdfSecure.
You should now have settings similar as in the screenshot below:

4. The .NET interface can now be used as shown below:

Example:

Dim doc As New PdfSecure.Secure
Dim sig As New PdfSecure.Signature
doc.Open(...)
...
If Not doc.SaveAs("C:\temp\output.pdf", _
 "", _

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 30/121

 "pwd", _
 PDFPermission.ePermPrint, _
 128, _
 "V2", _
 "V2") = True Then

4.3.2 C#

3. Add the following namespaces:

Example:

using Pdftools.Pdf;
using Pdftools.PdfSecure;

4. The .NET interface can now be used as shown below:

Example:

using (Secure doc = new Secure())
{
 doc.Open(...)
 using (Signature sig = new Signature())
 {
 ...
 doc.AddSignature(sig)
 ...
 }
}

4.3.3 Deployment

This is a guideline on how to distribute a .NET project that uses the 3-Heights® PDF Security API:

1. The project must be compiled using Microsoft Visual Studio. See also .NET interface.
2. For deployment, all items in the project’s output directory (e.g. bin\Release) must be copied to the target

computer. This includes the 3-Heights® PDF Security API’s .NET assemblies (*NET.dll), as well as the native
library (PdfSecureAPI.dll) in its 32 bit or 64 bit version or both. The native library can alternatively be copied
to a directory listed in the PATH environment variable, e.g. %SystemRoot%\System32.

3. It is crucial that the native library PdfSecureAPI.dll is found at execution time, and that the native library’s
format (32 bit versus 64 bit) matches the operating system.

4. The output directory may contain multiple versions of the native library, e.g. for Windows 32 bit, Windows 64 bit,
MacOS 64 bit, and Linux 64 bit. Only the versions that match the target computer’s operating system need be
deployed.

5. If required by the application, optional DLLs must be copied to the same folder. See Deployment for a list and
description of optional DLLs.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 31/121

4.3.4 Troubleshooting: TypeInitializationException

The most common issue when using the .NET interface is that the correct native DLL PdfSecureAPI.dll is not
found at execution time. This normally manifests when the constructor is called for the first time and an exception
of type System.TypeInitializationException is thrown.

This exception can have two possible causes, which you distinguish by the inner exception (property
InnerException):

System.DllNotFoundException Unable to load DLL PdfSecureAPI.dll: The specified module could not
be found.

System.BadImageFormatException An attempt was made to load a program with an incorrect format.

The following sections describe in more detail how to resolve these issues.

Troubleshooting: DllNotFoundException

This means that the native DLL PdfSecureAPI.dll could not be found at execution time.

Resolve this by performing one of these actions:

Use the NuGet package.
Add PdfSecureAPI.dll as an existing item to your project and set its property “Copy to output directory” to
“Copy if newer”, or
Add the directory where PdfSecureAPI.dll resides to the environment variable %Path%, or
Manually copy PdfSecureAPI.dll to the output directory of your project.

Troubleshooting: BadImageFormatException

The exception means that the native DLLPdfSecureAPI.dllhas the incorrect “bitness” (i.e. platform 32 vs. 64bit).
There are two versions of PdfSecureAPI.dll available in the ZIP archive: one is 32-bit (directory bin\Win32)
and the other 64-bit (directory bin\x64). It is crucial that the platform of the native DLL matches the platform of
the application’s process.

(Using the NuGet package normally ensures that the matching native DLL is loaded at execution time.)

The platform of the application’s process is defined by the project’s platform configuration for which there are three
possibilities:

AnyCPU This means that the application runs as a 32-bit process on 32-bit Windows and as 64-bit process on
64-bit Windows. When using AnyCPU, then the correct native DLL must be used, depending on the Windows
platform. You can perform this either when installing the application by installing the matching native DLL, or at
application start-up by determining the application’s platform and ensuring the matching native DLL is loaded.
The latter can be achieved by placing both the 32 bit and the 64 bit native DLL in subdirectories win-x86 and
win-x64 of the application’s directory, respectively.

x86 This means that the application always runs as 32-bit process, regardless of the platform of the Windows
installation. The 32-bit DLL runs on all systems.

x64 This means that the application always runs as 64-bit process. As a consequence, the application will not run
on a 32-bit Windows system.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 32/121

5 User guide

5.1 Overview of the API

5.1.1 About the 3-Heights® PDF Security API

The 3-Heights® PDF Security API provides three key functionalities related to security in PDF documents:

1. Deal with encryption, decryption, and access permissions of PDF documents
2. Deal with digital signatures
3. Apply stamps to PDF documents

These three functionalities can be combined; they however are not closely related. Encryption and digital signature
are discussed in Encryption and Digital signatures, respectively.

5.2 About the API

The 3-Heights® PDF Security API requires a PDF document as input. In this manual, that document is referred to as
input document. In the graphic below that’s the document on the left hand side. The document can be opened
from file or from memory. If the document is encrypted, it is in a first step decrypted.

In the next step, application specific operations are applied. These can be setting new passwords and access per
missions or add a digital signature (not shown in graphic).

After that, a new PDF document is created according to the defined settings. In this manual, the new resulting doc
ument is referred to as output document. The input document is never changed by the 3-Heights® PDF Security API.
Thus, the output document must be a new document. It is not possible to directly overwrite the input document.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 33/121

5.3 Encryption

5.3.1 Encryption and how it works in PDF

A PDF document can be encrypted to protect its contents from unauthorized access. The encryption process applies
encryption to all streams (e.g. images) and strings, but not to other items in the PDF document. This means the
structure of the PDF document is accessible, but the content of its pages is encrypted.

When encryption is used in PDF, a security handler must be selected. The 3-Heights® PDF Security API always uses
the standard security handler that, according to the PDF Specification, has to be supported by any software that
can process encrypted PDF documents.

For more detailed information about PDF encryption in general, see PDF Reference, chapter 3.5.

5.3.2 Owner password and user password

The standard security handler allows access permissions and up to two passwords to be specified for a document:
An owner password and a user password.

user password protects the document against unauthorized opening and reading. If a PDF document is protected
by a user password, either the user or owner password must be provided to open and read the document. If a
document has a user password, it must have an owner password as well. If no owner password is defined, the
owner password is the same as the user password.

owner password is also referred to as the author’s password. This password grants full access to the document.
Not only can the document be opened and read, it also allows for changing the document’s security settings
(access permission and passwords).

The following table shows the four possible combinations of passwords and how an application processing such a
PDF document behaves.

Owner and user passwords

UserPwd OwnerPwd Behavior

none none Everyone can read. Everyone can change security settings. (No encryption)

none set Everyone can read. The user password is an empty string. Owner password
required to change security settings.

set none User password required to read. The owner password is equal to the user
password. User password required to change security settings.

set set User or owner password required to read. Owner password required to change
security settings.

5.3.3 Permission flags

The operations in a PDF document that are granted are controlled via permission flags. To set permission flags, the
PDF document must be encrypted and have an owner password. The owner password is required to initially set or
later change the permission flags.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 34/121

These access permission flags are:

Modifying the content of the document
Copying or extracting text and graphics from the document
Adding or modifying text annotations and interactive form fields
Printing the document (low or high quality)
Filling in forms and digitally signing the document
Assembling the document (inserting, rotating, deleting pages, etc.)

5.3.4 Encrypting a PDF document

If either of the passwords or permission flags is set, the document is encrypted.

If only a user password is set, but no owner password and no permission flags, the owner password is equal to the
user password and all permissions are granted.

In the 3-Heights® PDF Security API, the passwords and permission flags are provided as parameters of the SaveAs
function. The PDF Specification accepts an empty string as password. PDF applications by default try to open
documents with the empty string password.

To encrypt a document and protect it against any manipulations other than printing, the document must have an
owner password and the print permission flag set. In Visual Basic, a SaveAs call would look like this:

SaveAs("C:\temp\output.pdf", "", "ownerpwd", ePermPrint)

To encrypt a document similar as above, but in addition also have the application prompt the user for a password
to open and read the document, you can add a user password as additional parameter in the SaveAs function:

SaveAs("C:\temp\output.pdf", "userpwd", "ownerpwd", ePermPrint)

To not encrypt a document at all, set empty passwords and ePermNoEncryption (-1) for permission flags:

SaveAs("C:\temp\output.pdf", "", "", ePermNoEncryption)

5.3.5 Reading an encrypted PDF document

A PDF document that is not encrypted or protected with an owner password only can be read and decrypted by
the 3-Heights® PDF Security API’s Open function without providing a password.

In Visual Basic, it looks like this:

Open("C:\temp\input.pdf", "")

A PDF document that is protected by a user password can only be opened if either the user or the owner password
is provided as parameter in the Open function. Technically, it does not matter later on which of the two passwords
was provided, because both grant full access to the document. However, it is up to the application programmer to
distinguish between input documents that are password protected or not.

5.3.6 How secure is PDF encryption?

Any PDF application that is to process or display a PDF document must be able to read and decrypt the contents
of the pages to be able to display them. Technically, it cannot display an encrypted text or image without first
decrypting it. A PDF application program has therefore full access to any PDF document it can decrypt and display.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 35/121

PDF application programs such as all products of the PDF Security API family or Adobe Acrobat, can open and
decrypt PDF documents that have an owner password but no user password, without knowing that password. Oth
erwise, they couldn’t display the document. The application at that point has full access to the document. However,
this does not imply the user of this application is given the same access rights. The user should only be given the
access permissions defined by the permission flags and the password provided. Any PDF application that behaves
different from that can allow for changing the security settings or completely removing encryption from the docu
ment as long as the original document does not have a user password.

The user password protects the document, so that it only can be opened if the user or owner password is known.
No PDF application program can open a userpassword protected PDF document without providing the password.
The security of such a document, however, strongly depends on the password itself. Like in most passwordrelated
situations, insecure passwords can easily be found programmatically. For example, a brute force attempt testing all
passwords that either exist as word in a dictionary or have less than six characters only takes minutes.

5.4 Fonts

Some features of the 3-Heights® PDF Security API require fonts to be installed, e.g. for stamping text or the creation
of the visual appearance of digital signatures.

Note that on Windows, when a font is installed, it is by default installed only for a particular user. It is important to
either install fonts for all users, or make sure the 3-Heights® PDF Security API is run under that user and the user
profile is loaded.

5.4.1 Font cache

A cache of all fonts in all Font directories is created. If fonts are added or removed from the font directories, the
cache is updated automatically.

In order to achieve optimal performance, make sure that the cache directory is writable for the 3-Heights® PDF
Security API. Otherwise, the font cache cannot be updated and the font directories have to be scanned on each
program startup.

The font cache is created in the subdirectory <CacheDirectory>/Installed Fonts of the Cache directory.

5.5 Cryptographic provider

In order to use the 3-Heights® PDF Security API’s cryptographic functions such as creating digital signatures, a cryp
tographic provider is required. The cryptographic provider manages certificates and their private keys, and imple
ments cryptographic algorithms.

The 3-Heights® PDF Security API can use various different cryptographic providers. The following list shows the
provider that can be used for each type of signing certificate.

USB token or smart card These devices typically offer a PKCS#11 interface, which is the recommended way to
use the certificate →PKCS#11 provider.

On Windows, the certificate is usually also available in the Windows Cryptographic Provider.

In any case, signing documents is only possible in an interactive user session.

Hardware Security Module (HSM) HSMs always offer very good PKCS#11 support →PKCS#11 provider

For more information and installation instructions, see the separate document TechNotePKCS11.pdf.

TechNotePKCS11.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 36/121

Soft certificate Soft certificates are typically PKCS#12 files that have the extension .pfx or .p12 and contain the
signing certificate, as well as the private key and trust chain (issuer certificates). Soft certificate files cannot be
used directly. Instead, they must be imported into the certificate store of a cryptographic provider.

All platforms: The recommended way of using soft certificates is to import them into a store that offers a
PKCS#11 interface and use the PKCS#11 provider. For example:

A HSM
openCryptoki on Linux

For more information and installation instructions of the stores, see the separate document
TechNotePKCS11.pdf.
Windows: If no PKCS#11 provider is available, soft certificates can be imported into Windows certificate store,
which can then be used as cryptographic provider →Windows Cryptographic Provider

Signature serviceSignature services are a convenient alternative to storing certificates and key material locally. The
3-Heights® PDF Security API can use various different services. The configuration is explained in the following
sections of this documentation:

myBica Digital Signing Service
Swisscom All-in Signing Service
GlobalSign Digital Signing Service
QuoVadis sealsign

Custom signature handler If you want to create the cryptographic part of the signature yourself, i.e. you want to
implement the cryptographic provider yourself, you can register a Custom signature handler. This is described
in the respective subsection.

5.5.1 PKCS#11 provider

PKCS#11 is a standard interface offered by most cryptographic devices such as HSMs, USB tokens, or sometimes
even soft stores (e.g. openCryptoki).

More information on and installation instructions of the PKCS#11 provider of various cryptographic devices can be
found in the separate document TechNotePKCS11.pdf.

Configuration

Provider Property Provider or argument of BeginSession

The provider configuration string has the following syntax:

"‹PathToDll›;‹SlotId›;‹Pin›"

‹PathToDll› Path to driver library filename, which is provided by the manufacturer of the HSM, UBS token,
or smart card. Examples:

The CardOS API from Atos (Siemens) uses siecap11.dll
The IBM 4758 cryptographic coprocessor uses cryptoki.dll
Devices from Aladdin Ltd., use etpkcs11.dll
For SafeNet Luna, HSM use cryptoki.dll an Windows or libCryptoki2_64.so on Linux/UNIX.
For Securosys SA, Primus HSM or CloudsHSM, useprimusP11.dll7 on Windows andlibprimusP11.so7

on Linux.
For Google Cloud HSM (Cloud KMS), use libkmsp11.so8.

7 It is recommended to use version 1.7.32 or newer of the Primus HSM PKCS#11 Provider.
8 Must be used as described in PKCS#11 devices that contain private keys only.

TechNotePKCS11.pdf
TechNotePKCS11.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 37/121

‹SlotId› (optional). If it is not defined, it is searched for the first slot that contains a running token.

‹Pin› (optional). If it is not defined, the submission for the PIN is activated via the pad of the token.

If this is not supported by the token, the following error message is raised when signing: “Private key not
available.”

Example:

Provider = "C:\Windows\system32\siecap11.dll;4;123456"

Note: Some PKCS#11 drivers require the Terminate method to be called.
Otherwise, your application may crash upon termination.

The chapter Guidelines for mass signing contains important information to optimize performance when signing
multiple documents.

Interoperability support

The following cryptographic token interface (PKCS#11) products have been successfully tested:

SafeNet Protect Server
SafeNet Luna
SafeNet Authentication Client
IBM OpenCrypTokI
CryptoVision
Siemens CardOS
Utimaco SafeGuard CryptoServer
Securosys SA CloudsHSM7

Selecting a certificate for signing

The 3-Heights® PDF Security API offers different ways to select a certificate. The product tries the first of the following
selection strategies, for which the required values have been specified by the user.

1. Certificate fingerprint
Property SignerFingerprint

SHA-1 fingerprint of the certificate. The fingerprint is 20 bytes long and can be specified in hexadecimal
string representation, e.g. “b5 e4 5c 98 5a 7e 05 ff f4 c6 a3 45 13 48 0b c6 9d e4 5d f5”. In Windows certificate
store, this is called “Thumbprint”, if “Thumbprint algorithm” is “sha1”.

2. Certificate issuer and serial number
Properties Issuer and SerialNumber

Certificate issuer (e.g. “QV Schweiz CA”). In Windows certificate store, this is called “Issued By”.
Serial number of the certificate (hexadecimal string representation, e.g. “4c 05 58 fb”). This is a unique num
ber assigned to the certificate by its issuer. In Windows certificate store, this is the field called “Serial number”
in the certificate’s “Details” tab.

3. Certificate name and issuer (optional)
Properties Name and Issuer

Common Name of the certificate (e.g. “PDF Tools AG”). In Windows certificate store, this is called “Issued To”.
Optional: Certificate issuer (e.g. “QV Schweiz CA”). In Windows certificate store, this is called “Issued By”.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 38/121

Using PKCS#11 stores with missing issuer certificates

Some PKCS#11 devices contain the signing certificate only. However, to embed revocation information, it is impor
tant that the issuer certificates, i.e. the whole trust chain, is available as well.

On Windows, missing issuer certificates can be loaded from the Windows certificate store. Missing certificates can
be installed as follows:

1. Get the certificates of the trust chain. You can download them from the website of your certificate provider or
do the following:
a. Sign a document and open the output in Adobe Acrobat.
b. Go to “Signature Properties” and then view the signer’s certificate.
c. Select a certificate of the trust chain.
d. Export the certificate as “Certificate File” (extension .cer).
e. Do this for all certificates of the trust chain.

2. Open the exported files by double clicking on them in Windows Explorer.
3. Click “Install Certificate...”.
4. Select “automatically select the certificate store based on the type of certificate” and finish import.

PKCS#11 devices that contain private keys only

Some PKCS#11 devices, such as the Google Cloud HSM (Cloud KMS), can only store private keys and no certificates.
In such cases, it is possible to supply the required certificates externally using the methodSetSessionProperty.

Name Type Required Value

Certificate Bytes Required The signing certificate in either PEM (.pem, ASCII text) or DER
(.cer, binary) form.

This certificate must be selected as the signing certificate as
described in Selecting a certificate for signing.

PrivateKeyUri String Required The RFC 7512 URI specifying the private key object in the store.
The following URI formats are supported:

pkcs11:object=‹label› To specify the CKA_LABEL
object attribute of the private key. The ‹label› is a text
string that is converted to UTF-8 and percentdecoded
before matching the CKA_LABEL attribute.

Example: "pkcs11:object=Signing Certificate"

pkcs11:id=‹id› To specify the CKA_ID object attribute of
the private key. The value of the ‹id› can be percent
encoded to match CKA_ID attributes with binary
data.

Example:
"pkcs11:id=%C8%48%EC%66%00%17%01%BA%AE%06"

This private key object must belong to the certificate that was
specified by the session property Certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 39/121

TrustChain Bytes Recommended The certificates of the trust chain in either PEM (.pem, ASCII text)
or DER (.cer, binary) form. Multiple certificates can be
concatenated into a single byte stream.

Supplying the certificates is highly recommended and required,
if revocation information (CRL, OCSP) should be embedded (see
property EmbedRevocationInfo).

using (Secure doc = new Secure())
{
 if (!doc.Open("input.pdf", ""))
 throw new Exception("Error opening input.pdf: " + doc.ErrorMessage);

 doc.SetSessionPropertyBytes("Certificate", File.ReadAllBytes("signing-certificate.cer"));
 doc.SetSessionPropertyString("PrivateKeyUri", "pkcs11:object=Signing Certificate");
 doc.SetSessionPropertyBytes("TrustChain", File.ReadAllBytes("trust-chain.cer"));

 if (!doc.BeginSession(@"myPKCS11.dll;;pin"))
 throw new Exception("Error connecting to provider: " + doc.ErrorMessage);

 using (Signature sig = new Signature())
 {
 sig.Name = "Signing Certificate";
 doc.AddSignature(sig);
 }

 if (!doc.SaveAs("signed.pdf", "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error saving signed.pdf: " + doc.ErrorMessage);
}

5.5.2 Cryptographic suites

Message digest algorithm

The default hash algorithm to create the message digest is SHA-256. Other algorithms can be chosen by setting
the provider session property MessageDigestAlgorithm, for which supported values are:

SHA-1 This algorithm is considered broken and therefore strongly discouraged by the cryptographic community.

SHA-256 (default)

SHA-384

SHA-512

RIPEMD-160

Signing algorithm

The signing algorithm can be configured by setting the provider session property SigAlgo. Supported values are:

RSA_RSA (default) This is the RSA PKCS#1v1.5 algorithm, which is widely supported by cryptographic providers.

RSA_SSA_PSS This algorithm is sometimes also called RSAPSS.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 40/121

Signing will fail if the algorithm is not supported by the cryptographic hardware. The device must support either
the signing algorithm CKM_RSA_PKCS_PSS (i.e. RSA_SSA_PSS) or CKM_RSA_X_509 (i.e. raw RSA).

Note: Setting the signing algorithm only has an effect on signatures created by
the cryptographic provider itself. All signed data acquired from external sources
may use other signing algorithms, specifically the issuer signatures of the trust
chain, the timestamp’s signature, or those used for the revocation information
(CRL, OCSP). It is recommended to verify that the algorithms of all signatures pro
vide a similar level of security.

5.6 Windows Cryptographic Provider

This provider uses Windows infrastructure to access certificates and to supply cryptographic algorithms. Microsoft
Windows offers two different APIs, the Microsoft CryptoAPI and Cryptography API Next Generation (CNG).

Microsoft CryptoAPI Provides functionality for using cryptographic algorithms and for accessing certificates
stored in the Windows certificate store and other devices, such as USB tokens, with Windows integration.

Microsoft CryptoAPI does not support some new cryptographic algorithms, such as SHA-256.

Cryptography API: Next Generation (CNG) CNG is an update to CryptoAPI. It extends the variety of available
cryptographic algorithms, e.g. by the SHA-256 hashing algorithms. If possible, the 3-Heights® PDF Security API
performs cryptographic calculations with CNG instead of CryptoAPI.

CNG is available only if:

The operating system is at least Windows Vista or Windows Server 2008.
The provider of the signing certificate’s private key, e.g. the USB token or smart card, supports CNG.

If CNG is not available, the CryptoAPI’s cryptographic algorithms are used. In any case, CryptoAPI is used for the
certificate accessing functionalities.

Default message digest algorithm: Since version 4.6.12.0 of the 3-Heights®
PDF Security API, the default message digest algorithm is SHA-256. As a result,
signing will fail if CNG is not available (error message “Private key not available.”).
To use SHA-1, the provider session property MessageDigestAlgorithm can
be used. Use of SHA-1 is strongly discouraged by the cryptographic community.

5.6.1 Configuration

Provider Property Provider or argument of BeginSession

The provider configuration string has the following syntax:

"[‹ProviderType›:]‹Provider›[;‹PIN›]"

The ‹ProviderType› and ‹PIN› are optional. The corresponding drivers must be installed on Windows. If
CNG is available, ‹ProviderType› and ‹Provider› are obsolete and can be omitted.

Optionally, when using an advanced certificate, the PIN code (password) can be passed as an additional, semi
column separated parameter ‹PIN›. This does not work with qualified certificates, because they always require
the PIN code to be entered manually every time.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 41/121

If ‹Provider› is omitted, the default provider is used. The default provider is suitable for all systems where
CNG is available.

Examples: Use the default provider with no PIN.

Provider = ""

Examples: “123456” being the PIN code.

Provider = ";123456"

Provider = "Microsoft Base Cryptographic Provider v1.0;123456"

Provider = "PROV_RSA_AES:Microsoft Enhanced RSA and AES Cryptographic" _
 + "Provider;123456"

Certificate store Property Store

The value for the certificate store depends on the OS. Supported values are: “CA”, “MY” and “ROOT”. For signa
ture creation, the default store “MY” is usually the right choice.

Store location Property StoreLocation

Either of the following store locations:

“Local machine”
“Current user” (default)

Usually, personal certificates are stored in the “current user” location and companywide certificates are stored
under “local machine”.

The “current user” store is only available, if the user profile has been loaded. This may not be the case in certain
environments, such as within an IIS web application or COM+ applications. Use the store of the local machine
if the user profile cannot be loaded. For other services, it is sufficient to log on as the user. Some cryptographic
hardware (such as smart cards or USB tokens) require an interactive environment. As a result, the private key
might not be available in the service session, unless the 3-Heights® PDF Security API is run interactively.

Certificates in the “Local Machine” store are available to all users. However, in order to sign a document, you
need access to the signing certificate’s private key. The private key is protected by Windows ACLs and typically
readable for Administrators only. Use the Microsoft Management Console (mmc.exe) to grant access to the
private key for other users as follows:

Add the Certificates Snap-in for the certificates on local machine. Rightclick on the signing certificate, click on
“All Tasks” and then “Manage Private Keys...” where you can set the permissions.

5.6.2 Selecting a certificate for signing

Within the certificate store selected by Store location and Certificate store, the selection of the signing certificate
works the same as with the PKCS#11 provider. For more information, see Selecting a certificate for signing.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 42/121

5.6.3 Certificates

To sign a PDF document, a valid existing certificate name must be provided and its private key must be available.

There are various ways to create or obtain a certificate. How this is done is not described in this document. This
document describes the requirements for and how to use the certificate.

On the Windows operating system, certificates can be listed by the Microsoft Management Console (MMC), which
is provided by Windows. To see the certificates available on the system, perform the following steps:

1. To launch the MMC, go to Start → Run…→ type “mmc”, or start a Command Prompt and type “mmc”.

2. Under “File”→“Add/Remove Snap-in”.
3. Choose “Certificates” and click the “Add” button.
4. In the next window choose to manage certificates for “My user account”.
5. Click “Finish”.
6. The certificate must be listed under the root “Certificates - Current User”. For example, as shown in the screen

shot below:

7. Doubleclick the certificate to open. The certificate name corresponds to the value “Issued to”.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 43/121

8. In the Details tab of the certificate, there is a field named “Key Usage”. This field must contain the value “Digital
Signature”. Additional values are optional. See the figure below.
You must have the private key that corresponds to this certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 44/121

5.6.4 Qualified certificates

A qualified certificate can be obtained from a certificate authority (CA). Besides the requirements listed in the pre
vious chapter, it has the additional requirement to contain the key “Authority Information Access”, which contains
the information about the OCSP server.

5.6.5 Cryptographic suites

The message digest algorithm and the signing algorithm can be chosen as described for the PKCS#11 provider in
Cryptographic suites.

TheMessageDigestAlgorithm can only be set to a value other thanSHA-1 if the private key’s provider supports
CNG.

The SigAlgo can only be set to RSA_SSA_PSS if the private key’s provider supports CNG.

5.7 myBica Digital Signing Service

Provider Property Provider or argument of BeginSession

The provider configuration string contains the URL to the service endpoint, typically, https://sign.my
bica.ch/DS/DS.

Provider configuration The provider can be configured using provider session properties.

There are two types of properties:

“String” Properties:
String properties are set using method SetSessionProperty.
“File” Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively, the
file can be passed in-memory as byte array using the method SetSessionProperty.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 45/121

Name Type Required Value

Identity String Required The identity of your signing certificate.

Example: My Company:Signing Cert
1

DSSProfile String Required Must be set to http://www.pdf
tools.com/dss/profile/
pades/1.0

SSLClientCertificate File Required SSL client certificate in PKCS#12 Format
(.p12, .pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private
key.

SSLClientCertificatePassword String Optional Password to decrypt the private key of the
SSL client certificate.

SSLServerCertificate File Recommended Certificate of the server or its issuer (CA)
certificate (.crt). The certificate may be in
either PEM (ASCII text) or DER (binary) form.

Note: If this property is not set, the server
certificate’s trustworthiness cannot be
determined. As a result, the connection is
not guaranteed to be secure.

RequestID String Recommended Any string that can be used to track the
request.

Example: An UUID like AE57F021-C0EB-
4AE0-8E5E-67FB93E5BC7F

Signature configuration The signature can be customized using standard properties of the 3-Heights® PDF
Security API.

Description Required Value Setting

Common Name Required The name of the signer must
be set9.

Property Name.

Timestamp optional Use the value
urn:ietf:rfc:3161 to
embed a timestamp.

Property TimeStampURL

Signature Format Optional To set the signature format Property SubFilter. Must
be adbe.pkcs7.detached

Revocation Info Recommended To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 46/121

Visual Appearance Optional See Creating a visual
appearance of a signature.

Proxy configuration If a proxy is used for the connection to the service, see Using a proxy for more information.

5.8 QuoVadis sealsign

Provider Property Provider or argument of BeginSession

The provider configuration string contains the URL to the QuoVadis sealsign service.

Demo service:
https://services.sealsignportal.com/sealsign/ws/BrokerClient
Productive service:
https://qvchsvsws.quovadisglobal.com/sealsign/ws/BrokerClient

Provider configuration The provider can be configured using provider session properties that can be set using
the method SetSessionProperty.

Name Type Required Value

Identity String Required The account ID is the unique name of the account
specified on the server.

Example: Rigora

Profile String Required The profile identifies the signature specifications by a
unique name.

Example: Default

secret String Required The secret is the password which secures the access
to the account.

Example: NeE=EKEd33FeCk70

clientId String Required A client ID can be used to help separating access and
creating better statistics. If specified in the account
configuration it is necessary to provide this value.

Example: 3949-4929-3179-2818

pin String Required The PIN code is required to activate the signing key.
Example: 123456

MessageDigestAlgorithm String Optional The message digest algorithm to use.

Default: SHA-256

Alternatives: SHA-1, SHA-384, SHA-512,
RIPEMD-160, RIPEMD-256

Signature configuration The signature can be customized using standard properties.

9 This parameter is not used for certificate selection, but for the signature appearance and description in the PDF only.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 47/121

Description Required Value Setting

Common Name Required The name of the signer must
be set10.

Property Name.

Timestamp - Not available.

Revocation Info Recommended To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

Visual Appearance Optional See Creating a visual
appearance of a signature.

Proxy configuration If a proxy is used for the connection to the service, see Using a proxy for more information.

5.9 Swisscom All-in Signing Service

5.9.1 General properties

To use the signature service, the following general properties have to be set:

Description Required Value Setting

Common Name Required Name of the signer11. Property Name

Provider Required The service endpoint URL of the
REST service.

Example:
https://ais.swisscom.com/
AISServer/rs/v1.0/sign

Property Provider

Timestamp optional Use the value
urn:ietf:rfc:3161 to embed a
timestamp.

Property TimeStampURL

Signature Format Optional To set the signature format Property SubFilter. Supported
values are
adbe.pkcs7.detached,
ETSI.CAdES.detached,
ETSI.RFC316112.

Revocation Info Optional To embed OCSP responses Property EmbedRevocationInfo.
Supported with
adbe.pkcs7.detached only.

If a proxy is used for the connection to the service, see Using a proxy for more information.

10 This parameter is not used for certificate selection, but for the signature appearance and description in the PDF only.
11 This parameter is not used for certificate selection, but for the signature appearance and description in the PDF only.
12 ETSI.RFC3161 is automatically set when signing with AddTimeStampSignature

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 48/121

5.9.2 Provider session properties

In addition to the general properties, a few provider specific session properties have to be set.

There are two types of properties:

“String” Properties:
String properties are set using method SetSessionProperty.
“File” Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively, the file
can be passed in-memory as byte array using the method SetSessionProperty.

Name Type Required Value

DSSProfile String Required Must be set to
http://ais.swisscom.ch/1.0

SSLClientCertificate File Required SSL client certificate in PKCS#12 Format (.p12,
.pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private
key.

SSLClientCertificatePassword String Optional Password to decrypt the private key of the SSL
client certificate.

SSLServerCertificate File Recommended Certificate of the server or its issuer (CA)
certificate (.crt). The certificate may be in
either PEM (ASCII text) or DER (binary) form.

Note: If this property is not set, the server
certificate’s trustworthiness cannot be
determined. As a result, the connection is not
guaranteed to be secure.

Identity String Required The Claimed Identity string as provided by
Swisscom:

‹customer name›:‹key identity›

RequestID String Recommended Any string that can be used to track the request.

Example: An UUID like AE57F021-C0EB-
4AE0-8E5E-67FB93E5BC7F

5.9.3 On-demand certificates

To request an on-demand certificate, the following additional property has to be set:

Name Type Required Value

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 49/121

SwisscomAllInOnDemandDN String Required The requested distinguished name.

Example: cn=Hans Muster,o=ACME,c=CH

5.9.4 Step-up authorization using Mobile-ID

To use the step-up authorization, the following additional properties have to be set:

Name Type Required Value

SwisscomAllInMSISDN String Required Mobile phone number.

Example: +41798765432

SwisscomAllInMessage String Required The message to be displayed on the mobile phone.

Example: Pipapo halolu.

SwisscomAllInLanguage String Required The language of the message.

Example: DE

Those properties have to comply with the Swisscom Mobile-ID specification.

5.10 GlobalSign Digital Signing Service

Provider Property Provider or argument of iBeginSession

The provider configuration string contains the URL to the service endpoint.

https://emea.api.dss.globalsign.com:8443/v2

Provider configuration The provider can be configured using provider session properties.

There are two types of properties:

“String” Properties:
String properties are set using method SetSessionProperty.
“File” Properties:
File properties are set using method SetSessionPropertywith a file name parameter. Alternatively, the
file can be passed in-memory as byte array using the method SetSessionProperty.

Name Type Required Value

api_key String Required Your account credentials’ key parameter for
the login request.

api_secret String Required Your account credentials’ secret parameter
for the login request.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 50/121

Identity String Required Parameter to create the signing certificate.

Example for an account with a static
identity: {}

Example for an account with a dynamic
identity: { "subject_dn": {
"common_name": "John Doe" } }

SSLClientCertificate File Required SSL client certificate in PKCS#12 Format
(.p12, .pfx).

File must contain the certificate itself, all
certificates of the trust chain and the private
key.

SSLClientCertificatePassword String Optional Password to decrypt the private key of the
SSL client certificate.

SSLServerCertificate File Recommended Certificate of the server or its issuer (CA)
certificate (.crt). The certificate may be in
either PEM (ASCII text) or DER (binary) form.

Note: If this property is not set, the server
certificate’s trustworthiness cannot be
determined. As a result, the connection is
not guaranteed to be secure.

Signature configuration The signature can be customized using standard properties of the 3-Heights® PDF
Security API.

Description Required Value Setting

Common Name Required The name of the signer must
be set13.

Property Name.

Timestamp recommended Use the value
urn:ietf:rfc:3161 to
embed a timestamp.

Property TimeStampURL

Signature Format Optional To set the signature format Property SubFilter.
Supported values are
adbe.pkcs7.detached,
ETSI.CAdES.detached,
ETSI.RFC316112.

Revocation Info Recommended To embed OCSP responses or
CRL.

Property
EmbedRevocationInfo

Visual Appearance Optional See Creating a visual
appearance of a signature.

13 This parameter is not used for certificate selection, but for the signature appearance and description in the PDF only.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 51/121

Proxy configuration If a proxy is used for the connection to the service, see Using a proxy for more information.

Creating the SSL client certificate

When creating a new account, GlobalSign will issue an SSL client certificateclientcert.crt. The following com
mand creates a PKCS#12 file certificate.p12 that can be used for the SSLClientCertificate:

openssl pkcs12 -export -out certificate.p12 -inkey privateKey.key -in clientcert.crt

Getting the SSL server certificate

The SSL server certificate can either be found in the technical documentation of the “Digital Signing Service” or
downloaded from the server itself:

1. Get the server’s SSL certificate:

openssl s_client -showcerts -connect emea.api.dss.globalsign.com:8443 ^
 -cert clientcert.crt -key privateKey.key

2. The certificate is the text starting with “-----BEGIN CERTIFICATE-----” and ending with “-----END
CERTIFICATE-----”. Use the text to create a text file and save it as server.crt.

3. Use server.crt or one of its CA certificates for the SSLServerCertificate.

Advice on using the service

Whenever a new session is created using BeginSession, a login is performed. In this session, signatures can
be created using different identities, i.e. signing certificates, which are created as they are needed. Both signing
sessions and signing certificates expire after 10 minutes.

There are rate limits for both creating new identities and for signing operations. If multiple documents must be
signed at once, re-use the same session (and hence its signing certificates) for signing.

Due to the shortlived nature of the signing certificates, it is important to embed revocation information imme
diately. For example, by using AddValidationInformation or EmbedRevocationInfo. Furthermore, it is
highly recommended to embed a timestamp to prove that the signature was created during the certificate’s validity
period.

5.11 Custom signature handler

The 3-Heights® PDF Security API provides the capability of replacing the default built-in signature handler with
a custom signature handler. A custom signature handler has full control over the creation and validation of the
cryptographic part of a signature. This makes it possible to implement proprietary signing algorithms.

The custom signature handler must implement a C interface as described in the header file pdfsignaturehan
dler.h. It can be registered using a call to PdfRegisterSignatureHandler() during the initialization of the
3-Heights® PDF Security API. When using a custom signature handler, it is important that this call be made before
using the API for signing.

This allows the PDF and signature technologies to be treated separately and also provides an easy way to replace a
signature handler.

%

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 52/121

6 Creating digital signatures

This chapter describes the steps that are required to create different types of digital signatures. A good introductory
example can be found in Creating electronic signatures.

6.1 Signing a PDF document

As seen previously in Creating electronic signatures, the process steps to add a signature are as shown in the graphic
below:

Open AddSignature SaveAs Close

3-Heights™ PDF Security API

PDF Certificate

Signed PDF

1. A PDF input document is opened
2. A signature is created and added using a certificate
3. A new, signed PDF output document is created
4. The input document is closed

6.2 Creating a preview of a signed document

The 3-Heights® PDF Security API lets you create a PDF document with a visual appearance of a digital signature
without actually signing the document. This document can be used for a preview. If the preview is accepted, the
document can be signed without visually changing the document. The process steps to prepare a document for
signing and actually sign it upon approval of the user are as shown in the graphic below:

Open AddPreparedSignature

3-Heights™ PDF Security API

SaveAs SignPreparedSignature Close SaveAs

User accepts
preview

PDF for preview Signed PDF

PDF Certificate

1. A PDF input document is opened.
2. A digital signature is prepared and a visual appearance is generated.
3. A new preview PDF output document is created. This document does not contain a digital signature; however,

it contains a placeholder for a signature.
4. If the preview PDF is approved, the document is signed using a certificate.
5. A new, signed PDF output document is created, which looks identical to the preview PDF.
6. The input document is closed.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 53/121

6.3 Creating a PAdES signature

The PAdES European standard (ETSI EN 319 142) recommends that one of the following four baseline signature
levels be used:

PAdES-B-B A digital signature.

PAdES-B-T A digital signature with a timestamp token.

PAdES-B-LT A digital signature with a timestamp token and signature validation data. The signature is a longterm
signature or “LTV enabled”.

PAdES-B-LTA A digital signature with a timestamp token and signature validation data protected by a document
timestamp.

The lifecycle of digital signatures and the usage of these signature levels are described in more detail in chapter
8.11.6 “Digital signatures lifecycle” of ETSI TR 119 100.

Note: The Decision 2015/1506/EU of the eIDAS Regulation (Regulation (EU)
N°910/2014) still refers to the previous legacy PAdES baseline signature standard
ETSI TS 103 172. However, the signatures as created by the 3-Heights® PDF Secu
rity API are compatible.

The Compatibility of PAdES signature levels shows how the signature levels described above and as created by the
3-Heights® PDF Security API conform with other standards.

Compatibility of PAdES signature levels

ETSI EN 319 142 ETSI TS 102 778 ETSI TS 103 172 ISO 14533-3

PAdES-B-B PAdESBES (Part 3) PAdES B-Level -

PAdES-B-T PAdESBES (Part 3) PAdES T-Level PAdES-T

PAdES-B-LT PAdESBES (Part 3) PAdES LT-Level PAdES-A

PAdES-B-LTA PAdESLTV (Part 4) PAdES LTALevel PAdES-A

Requirements

For general requirements and preparation steps, see Creating electronic signatures.

Requirements

Level Signing Certificate Timestamp Product

PAdES-B-B any no 3-Heights® PDF Security API

PAdES-B-T any required 3-Heights® PDF Security API

PAdES-B-LT advanced or qualified certificate required 3-Heights® PDF Security API

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 54/121

Requirements

PAdES-B-LTA advanced or qualified certificate required 3-Heights® PDF Security API

Make sure the trust store of your cryptographic provider contains all certificates of the trust chain, including the
root certificate. Also include the trust chain of the timestamp signature, if your TSA server does not include them in
the timestamp.

A proper error handling is crucial in order to ensure the creation of correctly signed documents. The output docu
ment was signed successfully, if and only if the method SaveAs returns true.

Note on encryption and linearization: Because signature levels PAdES-B-LT
and PAdES-B-LTA must be created in a twostep process, the files cannot be lin
earized and encryption parameters cannot be changed. When creating signature
levels PAdES-B-B or PAdES-B-T that may later be augmented, linearization should
not be used and all encryption parameters (user password, owner password, per
mission flags, and encryption algorithm) must be the same for both steps.

PAdES vs. CAdES: CAdES is an ETSI standard for the format of digital signa
tures. The format used in PAdES is based on CAdES, which is why the format is
called ETSI.CAdES.detached (see SubFilter). Because PAdES defines addi
tional requirements suitable for PDF signatures, mere CAdES conformance is not
sufficient.

6.3.1 Create a PAdES-B-B signature

Input document Any PDF document.

Cryptographic provider A cryptographic provider that supports the creation of PAdES signatures.

using (Secure doc = new Secure())
{
 if (!doc.Open("input.pdf", ""))
 throw new Exception("Error opening input.pdf: " + doc.ErrorMessage);

 if (!doc.BeginSession(@"myPKCS11.dll;;pin"))
 throw new Exception("Error connecting to provider: " + doc.ErrorMessage);

 using (Signature sig = new Signature())
 {
 sig.Name = "My Signing Certificate";
 sig.SubFilter = "ETSI.CAdES.detached";
 sig.EmbedRevocationInfo = false;
 doc.AddSignature(sig);
 }

 if (!doc.SaveAs("pades-b-b.pdf", "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error saving pades-b-b.pdf: " + doc.ErrorMessage);
}

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 55/121

6.3.2 Create a PAdES-B-T signature

Input document Any PDF document.

Cryptographic provider A cryptographic provider that supports the creation of PAdES signatures.

using (Secure doc = new Secure())
{
 if (!doc.Open("input.pdf", ""))
 throw new Exception("Error opening input.pdf: " + doc.ErrorMessage);

 if (!doc.BeginSession(@"myPKCS11.dll;;pin"))
 throw new Exception("Error connecting to provider: " + doc.ErrorMessage);

 using (Signature sig = new Signature())
 {
 sig.Name = "My Signing Certificate";
 sig.SubFilter = "ETSI.CAdES.detached";
 sig.EmbedRevocationInfo = false;
 sig.TimeStampURL = "http://server.mydomain.com/tsa";
 doc.AddSignature(sig);
 }

 if (!doc.SaveAs("pades-b-t.pdf", "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error converting pades-b-t.pdf: " + doc.ErrorMessage);
}

6.3.3 Create a PAdES-B-LT signature

Input document A PDF document with a PAdES-B-T signature created using an advanced or qualified certificate.

Cryptographic provider Any cryptographic provider.

using (Secure doc = new Secure())
{
 if (!doc.Open("pades-b-t.pdf", ""))
 throw new Exception("Error opening pades-b-t.pdf: " + doc.ErrorMessage);

 if (!doc.BeginSession(@"myPKCS11.dll;0;pin"))
 throw new Exception("Error connecting to provider: " + doc.ErrorMessage);

 for (int i = 0; i < doc.SignatureCount; i++)
 using (Signature sig = doc.GetSignature(i))
 {
 if (sig.HasSignature &&
 !doc.AddValidationInformation(sig))
 throw new Exception("Error adding validation infformation to \""
 + sig.Name + "\": " + doc.ErrorMessage);
 }

 if (!doc.SaveAs("pades-b-lt.pdf", "", "",
 PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error saving pades-b-lt.pdf: " + doc.ErrorMessage);

© PDF Tools AG -- Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 56/121

}

6.3.4 Create a PAdES-B-LTA signature or extend longevity of a signature

Input document

A PDF document with a PAdES-B-T signature created using an advanced or qualified certificate, or
a PAdES-B-LTA signature whose longevity should be extended.

Cryptographic provider Any cryptographic provider whose trust store contains all certificates requried for Ad
dValidationInformation.

using (Secure doc = new Secure())
{
 if (!doc.Open("pades-b-t.pdf", ""))
 throw new Exception("Error opening pades-b-t.pdf: " + doc.ErrorMessage);

 if (!doc.BeginSession(@"myPKCS11.dll;0;pin"))
 throw new Exception("Error connecting to provider: " + doc.ErrorMessage);

 for (int i = 0; i < doc.SignatureCount; i++)
 using (Signature sig = doc.GetSignature(i))
 {
 if (sig.HasSignature &&
 !doc.AddValidationInformation(sig))
 throw new Exception("Error adding validation infformation to \""
 + sig.Name + "\": " + doc.ErrorMessage);
 }

 using (Signature timeStamp = new Signature())
 {
 timeStamp.TimeStampURL = "http://server.mydomain.com/tsa";
 doc.AddTimeStampSignature(timeStamp);
 }

 if (!doc.SaveAs("pades-b-lta.pdf", "", "",
 PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error saving pades-b-lta.pdf: " + doc.ErrorMessage);
}

6.4 Applying multiple signatures

Multiple signatures can be applied to a PDF document. One signature must be applied at the time. Signing a signed
file does not break existing signatures, because the 3-Heights® PDF Security API uses an incremental update.

Signing a linearized file renders the linearization information unusable. Therefore, it is recommended to not linearize
files that need to be signed multiple times.

using (Secure doc = new Secure())
{
 if (!doc.BeginSession("cvp11.dll;0;secret-pin"))
 throw new Exception("Unable to connect to Cryptographic Provider: "
 + doc.ErrorMessage);

© PDF Tools AG -- Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 57/121

 if (!doc.Open(inputPath, ""))
 throw new Exception("Document " + inputPath + " cannot be opened: "
 + doc.ErrorMessage);

 using (Signature signature = new Signature())
 {
 signature.Name = "First Signer";
 doc.AddSignature(signature);
 }

 var tmp = new System.IO.MemoryStream();
 if (!doc.SaveAsStream(tmp, "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Unable to sign temporary document: " + doc.ErrorMessage);

 doc.Close();

 if (!doc.OpenStream(tmp, ""))
 throw new Exception("Temporary document cannot be opened: " + doc.ErrorMessage);

 using (Signature signature = new Signature())
 {
 signature.Name = "Second Signer";
 doc.AddSignature(signature);
 }

 if (!doc.SaveAs(outputPath, "", "", PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Unable to sign "+outputPath+": "+doc.ErrorMessage);

 doc.Close();

 doc.EndSession();
}

6.5 Creating a timestamp signature

For a timestamp signature, no local signing certificate is required. Instead the timestamp signature requested from
the timestamp authority (TSA) is embedded into the document. Nonetheless, a Cryptographic provider that sup
ports timestamp signatures is required.

Example: Create a timestamp signature using the method AddTimeStampSignature.

using (Secure doc = new Secure())
{
 if (!doc.Open("input.pdf", ""))
 throw new Exception("Error opening input.pdf: " + doc.ErrorMessage);

 using (Signature timeStamp = new Signature())
 {
 timeStamp.Provider = "myPKCS11.dll";
 timeStamp.TimeStampURL = "http://server.mydomain.com/tsa";
 doc.AddTimeStampSignature(timeStamp);
 }

 if (!doc.SaveAs("output.pdf", "", "",

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 58/121

 PDFPermission.ePermNoEncryption, 0, "", ""))
 throw new Exception("Error saving output.pdf: " + doc.ErrorMessage);
}

6.6 Creating a visual appearance of a signature

Each signature may have a visual appearance on a page of the document. The visual appearance is optional and
has no effect on the validity of the signature. Because of this and because a visual appearance may cover important
content of the page, the 3-Heights® PDF Security API creates invisible signatures by default.

To create a visual appearance, a nonempty signature rectangle must be set. For example, by setting the property
Rect to [10, 10, 210, 60] the following appearance is created:

Different properties of the visual appearance can be specified.

Page and position See properties PageNo and Rect.

Color See properties FillColor and StrokeColor.

Line width The line width of the background rectangle, see property LineWidth.

Text Two text fragments can be set using two different fonts, font sizes, and colors see properties Text1, Text2,
Text1Color, Text2Color, FontName1, FontName2, FontSize1, and FontSize2.

Background image See property ImageFileName.

6.7 Guidelines for mass signing

This section provides some guidelines for masssigning documents using the 3-Heights® PDF Security API.

6.7.1 Keep the session to the security device open for multiple sign operations

Creating and ending the session to the security device is a complex operation. By re-using the session for multiple
sign operations, performance can be improved:

1. Create a PdfSecure object.
2. Open the session to the provider using BeginSession.
3. Use the PdfSecure object to sign multiple documents.
4. Close the session to the provider using EndSession.
5. Dispose of the PdfSecure object.

6.7.2 Signing concurrently using multiple threads

The 3-Heights® PDF Security API is threadsafe. EachPdfSecure object should be used in one thread at a time only.
It is recommended that each thread has a separate PdfSecure object.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 59/121

The performance improvement when signing concurrently using multiple threads depends mainly on the security
device used. Typically, the improvement is large for HSMs and small for USB tokens.

6.7.3 Thread safety with a PKCS#11 provider

The PKCS#11 standard specifies that “an application can specify that it will be accessing the library concurrently from
multiple threads, and the library must […] ensure proper threadsafe behavior.” However, some PKCS#11 provider
(middleware) implementations are not threadsafe. For this reason, the 3-Heights® PDF Security API synchronizes
all access to the same provider (middleware and slot ID).

If your middleware is threadsafe, you can enable full parallel usage of the cryptographic device by setting the
session property "LOCKING_OK" to the value "True" using the method SetSessionProperty.

Example: Enable parallel access to the cryptographic device.

doc.SetSessionPropertyString("LOCKING_OK", "true");

6.8 Miscellaneous

6.8.1 Caching of CRLs, OCSP, and timestamp reponses

To improve the speed when mass signing, the 3-Heights® PDF Security API provides a caching algorithm to store
CRL (Certificate Revocation List), OCSP (Online Certificate Status Protocol), TSP (Timestamp Protocol) and data from
signature services. This data is usually valid over period of time that is defined by the protocol, which is normally
at least 24 hours. Caching improves the speed, because there are situations when the server does not need to be
contacted for every digital signature.

The following caches are stored automatically by the 3-Heights® PDF Security API at the indicated locations within
the Cache directory:

Certificates <CacheDirectory>/Certificates/hash.cer

CRL <CacheDirectory>/CLRs/server.der

OCSP responses <CacheDirectory>/OCSP Responses/server-hash.der

Service data <CacheDirectory>/Signature Sizes/hash.bin

Timestamp responses14 <CacheDirectory>/Time Stamps/server.der

The caches can be cleared by deleting the files. Usage of the caches can be deactivated by setting the NoCache
flag. The files are automatically updated if the current date and time exceeds the “next update” field in the OCSP or
CRL response, respectively, or the cached data was downloaded more than 24 hours ago.

14 The sizes of the timestamp responses are cached only. Cached timestamp responses cannot be embedded but used for the computation of the
signature length only.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 60/121

6.8.2 Using a proxy

The 3-Heights® PDF Security API can use a proxy server for all communication to remote servers, e.g. to download
CRL or for communication to a signature service. The proxy server can be configured using the provider session
property Proxy. The property’s value must be a string with the following syntax:

http[s]://[‹user›[:‹password›]@‹host›[:‹port›]

Where:

http / https: Protocol for connection to proxy.
‹user›:‹password› (optional): Credentials for connection to proxy (basic authorization).
‹host›: Hostname of proxy.
‹port›: Port for connection to proxy.

For SSL connections, e.g. to a signature service, the proxy must allow the HTTP CONNECT request to the signature
service.

Example: Configuration of a proxy server that is called “myproxy” and accepts HTTP connections on port 8080.

doc.SetSessionPropertyString("Proxy", "http://myproxy:8080")

6.8.3 Configuring a proxy server and firewall

For the application of a timestamp or online verification of certificates, the signature software requires access to the
server of the certificates’ issuer (e.g. http://ocsp.quovadisglobal.com or http://platinum-qualified
-g2.ocsp.swisssign.net/) via HTTP. The URL for verification is stored in the certificate; the URL for timestamp
services is provided by the issuer. If these functions are not configured, no access is required.

In organizations where a web proxy is used, it must be ensured that the required MIME types are supported. These
are:

OCSP

application/ocsprequest
application/ocspresponse

Timestamp

application/timestampquery
application/timestampreply

Signature services

Signature servicespecific MIME types.

6.8.4 Setting the signature build properties

In the signature build properties dictionary, the name of the application that created the signature can be set using
the provider session properties Prop_Build.App.Name and Prop_Build.App.REx. The default values are
“3-Heights® PDF Security API” and its version.

http://ocsp.quovadisglobal.com
http://platinum-qualified-g2.ocsp.swisssign.net/
http://platinum-qualified-g2.ocsp.swisssign.net/

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 61/121

7 Validating digital signatures

7.1 Validating a qualified electronic signature

There are basically three items that need to be validated:

1. Trust chain
2. Revocation information (optional)
3. Timestamp (optional)

Validation can be done in different ways, e.g. Adobe Acrobat, from which the screenshots below are taken.

7.1.1 Trust chain

Before the trust chain can be validated, ensure the root certificate is trusted. There are different ways to add a
certificate as trusted root certificate. The best way on Windows is this:

1. Retrieve a copy of the certificate containing a public key. This can be done be requesting it from the issuer (your
CA) or by exporting it from an existing signature to a file (CertExchange.cer). Ensure you are not installing
a malicious certificate!

2. Add the certificate to the trusted root certificates. If you have the certificate available as file, you can simply
doubleclick it to install it.

After that you can validate the signature, e.g. by open the PDF document in Adobe Acrobat, rightclick the signature
and select “Validate”, then select “Properties”, and select the tab “Trust”. There the certificate should be trusted to
“sign documents or data”.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 62/121

7.1.2 Revocation information

An OCSP response or CRL must be available. This is shown in the tab “Revocation”. The details should mention that
“the certificate is considered valid”.

The presence of revocation information must be checked for the signing certificate and all certificates of its trust
chain, except for the root certificate.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 63/121

7.1.3 Timestamp

The signature can optionally contain a timestamp. This is shown in the tab “Date/Time”. The certificate of the time
stamp server must also be trusted, i.e. its trust chain should be validated as described in the section Trust Chain
above.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 64/121

7.2 Validating a PAdES LTV signature

Verifying if a signature conforms to the PAdES LTV standard is similar to validating a Qualified Electronic Signature.

The following must be checked:

1. Trust chain
2. Revocation information
3. Timestamp
4. LTV expiration date
5. Other PAdES requirements

7.2.1 Trust chain

Trust chain validation works the same as for validating Qualified Electronic Signatures.

7.2.2 Revocation information

Revocation information (OCPS response or CRL) must be valid and embedded into the signature. In the details,
verify that the revocation check was performed using data that was “was embedded in the signature or embedded
in the document”. Revocation information that “was contained in the local cache” or “was requested online” is not
embedded into the signature and does not meet PAdES LTV requirements. If Adobe Acrobat claims that revocation

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 65/121

information is contained in the local cache, even though it is embedded into the document, restart Adobe Acrobat
and validate the signature again.

7.2.3 Timestamp

A timestamp must be embedded and validated as described for validating Qualified Electronic Signatures. If a doc
ument contains multiple timestamps, all but the latest one must contain revocation information.

7.2.4 LTV expiration date

The longterm validation ability expires with the expiration of the signing certificate of the latest timestamp.

The lifetime of the protection can be further extended beyond the life of the last timestamp applied by adding
further DSS information to validate the previous last timestamp as well as a new timestamp. This process is described
in Creating a PAdES signature.

7.2.5 Other PAdES requirements

Certain other PAdES requirements, such as requirements on the PKCS#7 CMS, cannot be validated using Adobe
Acrobat. For this, use the 3-Heights® PDF Security API for validation.

See method ValidateSignature in the PdfSecure interface.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 66/121

8 Advanced guide

8.1 Using the in-memory functions

The 3-Heights® PDF Security API always requires two PDF documents. A PDF input document from which it reads
and a PDF output document to where the result is saved.

To open from and save to files, the Open and SaveAs methods are used. These two methods are described in
Encrypting a PDF document and Reading an encrypted PDF document.

Instead of accessing files, the documents can be read from and written to in-memory. The corresponding methods
are OpenMem and SaveInMemory.

Input-File

Decrypt

Memory

Open

OpenMem

Encrypt

SaveAs

SaveInMemory

Memory

Output-File

3-Heights™ PDF Security API

Once the output document is saved to memory using SaveInMemory, the memory block can be accessed using
the GetPdfmethod.

A call sequence to create a first PDFSecure object that opens a PDF from file and stores its output in-memory and
then a second object, which reads that in-memory document and saves it back to a file looks like this:

PDFSecure1.Open(InputFile)
PDFSecure1.SaveInMemory()
PDFSecure1.Close()
PDFSecure2.OpenMem(PDFSecure1.GetPdf())
PDFSecure2.SaveAs(OutputFile)
PDFSecure2.Close()

This call sequence of course does not make much sense. It’s merely used to illustrate how to use of the in-memory
functions. In a real application, the in-memory document is read from another application or a database.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 67/121

9 Stamping

The 3-Heights® PDF Security API can add new content such as text or images to the output document. This process
is called stamping. The content of previously applied stamps can be modified.

The 3-Heights® PDF Security API can sign and stamp documents in one step. To not invalidate existing signatures,
stamps can be modified and created using stamp annotations with an incremental update to the input document.
An example of this can be seen in the screenshot below.

9.1 Stamp file syntax

Stamps are described with XML data that is passed to the 3-Heights® PDF Security API either as file using the method
AddStamps, AddStampsMem or as memory block using the method AddStamps, AddStampsMem. A stamp file
can contain one or more stamps.

For each Tag there is a separate table below, where the AttributeNames and the AttributeValues are
described.

<pdfstamp>
The Root Tag for the PDF stamp XML file. The tag may contain multiple stamps.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 68/121

xmlns="http://www.pdf-tools.com/pdfstamp/" (required)
XML namespace used for all stamp elements.

9.1.1 Stamp

A stamp is defined by a <stamp> tag that specifies the stamp’s size, position, and pages to which it is applied to.
The stamp’s appearance is defined by the content operators contained therein.

<stamp> Add a Stamp

page="‹page_set›" (required)
The pages to which the stamp is to be applied. The syntax is as follows:

‹page_set› = ‹page_range› ["," ‹page_range›]
‹page_range› = ‹n› | ‹n1›-‹n2› | first | last | not_first | not_last | even
| odd | all

Where:

‹n›, ‹n1›, ‹n2›: Page number. 1 defines the first page.
The prefix ^ can be used to count from the end of the document. For example, ^1 specifies the last and
^2 the second to last page.
first: First page
last: Last page
odd: Only odd pages including first page and last page in case it is odd
even: Only even pages including last page in case it is even
all: All pages
not_first: First page excluded
not_last: Last page excluded

Example: page="1,2-4,6,10,last"

name="‹identifier›" (optional)
Unique identifier of the stamp, must be less than 127 characters, see section Modify content of existing
stamps for more information.

relativepos="‹x› ‹y›" (required)
Relative position ‹x› and ‹y› of the stamp with regards to the page. Positive values of ‹x› and ‹y› define
the distances of the stamp to the left and lower, negative values to the right and upper page boundary
respectively. The units of the values are PDF units of 1/72 inch. The positioning algorithm works best for
stamp rotation angles that are a multiple of 90° (see rotate attribute).

‹x› or ‹y› are ignored, if respective align is used.

Examples:

1. relativepos=" 10 -10" places the stamp in the upper left corner of the page.
2. relativepos="-10 -10" places the stamp in the upper right corner of the page.
3. relativepos=" 10 10" places the stamp in the lower left corner of the page.
4. relativepos="-10 10" places the stamp in the lower right corner of the page.

align="‹alignment›" (optional)
Align the stamp with the page. Allowed values for ‹alignment› are:

center: position horizontally at center of page, the ‹x› value of relativepos is ignored.
middle: position vertically at middle of page, the ‹y› value of relativepos is ignored.
transverse: position stamp in the middle of the page and rotate it, such that it aligns with the diagonal
of the page from the lower left to the upper right corner. Note that transverse cannot be used in
combination with the attributes relativepos and rotate.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 69/121

Examples:

1. <stamp position="0 4" align="center">
Centers the stamp horizontally and 4 pt away from the bottom of the page.

2. <stamp position="-4 0" align="middle">
Centers the stamp vertically and 4 pt away from the right edge of the page.

size="‹w› ‹h›" (optional)
The width and height of the stamp. The stamp’s content will be clipped to this rectangle. If this is not specified
or either ‹w› or ‹h› are zero, the respective size is calculated to fit content.

rotate="‹angle›" (optional)
Rotation of the stamp in degrees clockwise.

scale="‹scale_set›" (optional)
Modify scale of stamp. Allowed values for ‹scale_set› are:

relToA4: Scale the stamp relative to the page size. For example, make stamp half as large on an A5 and
twice as large on an A3 page as specified.
shrinkRelToA4: Shrink stamp for all pages smaller than A4. For example, on A5 make stamp half as
large as specified and as specified an A3 page.

autoorientation="‹b›" (optional)
Allowed values for ‹b› are:

false (default): Always position stamps as defined by stamp attributes.
true: Detect orientation (portrait and landscape) of page automatically and treat landscape page as 90°
rotated portrait. Useful to apply stamps to “long” or “short” edge of page.

alpha="‹ca›" (optional)
The opacity of the stamp as a whole. 1.0 for fully opaque, 0.0 for fully transparent.

Default: 1.0

The PDF/A-1 standard does not allow transparency. Therefore, for PDF/A-1 conforming input files you must
not set alpha to a value other than 1.0.

type="‹type›" (optional)
The type of the stamp

annotation (default): The stamp is added to the page as a stamp annotation. Creating or modifying
stamps of this type will not invalidate existing signatures of the input document. While it is not easily
possible to remove stamps of this type, it is possible to print a document without annotations.
foreground15: The stamp is added to the foreground of the page content. Creating or modifying
stamps of this type will invalidate all existing signatures of the input document. It is not easily possible
to remove stamps of this type nor can the document be printed without them.
background: The stamp is added to the background of the page content. Creating or modifying stamps
of this type will invalidate all existing signatures of the input document. It is not easily possible to remove
stamps of this type nor can the document be printed without them.
Note that stamps placed this way can be hidden when pages contain a nontransparent background. In
these cases, you may rather want to put the stamps in the foreground, but apply alpha transparency to
achieve a result with existing content not covered completely.

flags="‹flags›" (optional)
Set the flags of the stamp annotation (i.e. stamps with type="annotation"). ‹flags› is a comma sepa
rated list of the following values: NoView, Print, ReadOnly, and Locked. See chapter 8.4.2 “Annotation
Flags” of the PDF Reference 1.7 for a description of the flags.

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 70/121

For PDF/A conformance, the flag Printmust be set and NoViewmust not be set.

Default: Print, ReadOnly, Locked

layer="‹name›" (optional)
Set the name of the layer that can be used by the consumer to selectively view or hide the stamp. If the
attribute is omitted or its value is empty, no layer is used so the stamp is always visible.

For input documents that already contain a layer of the specified name the document’s existing layer is used.
Otherwise, a new layer is created. The new layer is visible by default and inserted at the end of the document’s
list of layers.

Default: no layer

The PDF/A-1 standard does not allow layers. Therefore, for PDF/A-1 conforming input files you must
not set the attribute layer. In order to preserve the conformance of PDF/A-1 input documents, the
3-Heights® PDF Security API will not create layers and indicate a stamping warning by setting ErrorCode
to PDF_STMP_W_PS.

Coordinates

All coordinate and size values are in PDF units of 1/72 inch (A4 = 595 x 842 points, letter = 612 x 792 points). The
origin of the coordinate system is generally the lower left corner of the reference object. For stamps the reference
object is the page, for content operators the reference is the stamp rectangle.

Modify content of existing stamps

Setting the name attribute of a stamp allows the stamp’s content to be replaced later. If an existing stamp with the
same name exists in the input file, its content is replaced as shown in example Example 2: Modify “Simple Stamp”.
Note that when updating a stamp, its pageset, position and size cannot be changed. Therefore, if you intend to
update a stamp, make sure to create it specifying a size that is sufficiently large.

When modifying a stamp, only its content may be changed. All attributes of <stamp>must remain unchanged, in
particular page, size and type.

9.1.2 Stamp content

Each stamp contains a number of content operators that define the appearance (i.e. the content) of the stamp. The
content operators are applied in the order they appear within <stamp>where each content element is drawn over
all previous elements (i.e. increasing z-order).

Text

Stamp text is defined by <text>. All character data (text) therein is stamped:

<text font="Arial" size="12">Some text</text>

Text fragments can be formatted differently by enclosing them in a element. All text formatting attributes
are inherited from the parent element and can be overridden in :

<text font="Arial" size="12" >Text with a <span

15 Up to version 4.5.6.0 of the 3-Heights® PDF Security API this type was called content.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 71/121

 font="Arial,Bold">bold and a red word.</text>

Note that all character data in <text> is added, including whitespace such as spaces and line breaks.

<text> Add Text

All text formatting attributes described in can also be specified in <text>.

position="‹x› ‹y›" (optional)
The position in points within the stamp, e.g. "200 300".

With the default values for align (align="left top"), position defines the top left corner of the
text16.

align="‹xalign› ‹yalign›" (optional)
Align text at position or stamp, if position is not set.

Values for horizontal alignment ‹xalign›:

left: align to the left (default)
center: center text
right: align to the right

Values for vertical alignment ‹yalign›:

top: align to the top (default)
middle: align to the middle
bottom: align to the bottom

Examples:

1. <text align="left bottom" ...>
positions the text in the left bottom corner of the stamp.

2. <text align="left bottom" position="10 10" ...>:
align left bottom corner of text to position "10 10".

format="‹b›" (optional)
Whether or not to enable formatting of variable text. Allowed values for ‹b› are true and false (default).
See Variable text for more information.

text="‹text›" (optional)
The text that is to be written, e.g. text="Hello World".

Multiline text is supported by using the newline character
, e.g. text="1st line
2nd
line".

If the attribute text is not specified, the text content of <text> is used. So <text ... text="Hello
World"/> produces the same result as <text ...>Hello World</text>.

 Define Formatting of Text

Example: <text font="Arial" size="8">Note: Text
can be formatted using .</text>

color="‹r› ‹g› ‹b›" (optional)
The color as RGB value, where all values must be in the range from 0 to 1, e.g.:

Red: "1 0 0"
Green: "0 1 0"

16 Prior to version4.4.31.0 of the 3-Heights® PDF Security API,position specified the origin of the first character. When upgrading, add 0.75*size
to the value of ‹y›.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 72/121

Yellow: "1 1 0"
Black: "0 0 0" (default)
Gray: "0.5 0.5 0.5"

font="‹name›" (required)
The TrueType name of the font, e.g. "Arial" or "Times New Roman,Bold", or a complete path to the font,
e.g. "C:\Windows\Fonts\Arial.ttf".

TrueType names consist of a font family name, which is optionally followed by a comma and style, e.g. "Ver
dana,Italic". Commonly available styles are"Bold","Italic", and"BoldItalic". The respective font
must be available in any of the font directories (see Fonts).

size="‹n›" (required)
The font size in points, e.g. 12.

If set to 0 or auto, the size is chosen such that text fits the stamp’s size. This is only allowed under these condi
tions:

The <text> element is not within a transformation operator.
The stamp has a fixed size. It can either be defined by the attributesize or from updating an existing stamp.
If the text’s attribute position is set, the position must be inside the stamp’s size.

fontencoding="‹encoding›" (optional)
This attribute is relevant only, if the stamp will be modified later (see section Modify content of existing stamps).

The PDF/A standard demands that all used fonts must be embedded in the PDF. Since fonts with many glyphs can
be very large in size (>20MB), unused glyphs are removed prior to embedding. This process is called subsetting.
The value ‹encoding› controls the subsetting and must be one of the following:

Unicode: (default) Only the glyphs used by the stamp are embedded. If the stamp is modified, a new font
that includes the new glyph set has to be re-embedded. This setting is recommended for stamps that will
not be modified later.
WinAnsi: All glyphs required for WinAnsiEncoding are embedded. Hence the text’s characters are be lim
ited to this character set. If the content of the stamp is updated, fonts using WinAnsiwill be reused.

For example, embedding the font Arial with Unicode and approximately ten glyphs uses 20KB while Arial with
WinAnsi (approximately 200 glyphs) uses 53KB of font data.

mode="‹modes›" (optional)

The attribute mode controls the rendering mode of the text.

Allowed values for ‹modes› are the following or a combination thereof:

fill: (default) The text is filled.
stroke: The text’s outlines are stroked. The width of the stroke is specified by linewidth.

linewidth="‹f›" (optional)
Set the line width in points, e.g. 1.0 (default).

decoration="‹decorations›" (optional)

The attribute decoration can be used to add any of the following text decorations:

underline: A small line is drawn below the text.

<link> Create Link

For all text contained within this element, a link is created. Links work best for stamps with
type="foreground", but are possible for other types as well.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 73/121

Example: <text font="Arial" size="8">© <link uri="https://www.pdf-tools.com/"

> Pdftools – PDF Tools AG</link></text>

uri="‹uri›" (required)
The URI which is the link target.

<filltext> Obsolete tag.
Starting with version 4.9.1.0 of the 3-Heights® PDF Security API the element <filltext …> was rendered
obsolete by <text …>.

<stroketext> Obsolete tag.
Starting with version 4.9.1.0 of the 3-Heights® PDF Security API the element <stroketext …>was rendered
obsolete by <text mode="stroke" …>.

Variable text

Variable text such as the current date or the number of pages can be stamped in <text>. The feature must be
activated by setting format="true".

Variable text elements are of the following form:

"{‹value›:‹format›}"

The ‹value› defines the type of value. ‹format› is optional and specifies how the value should be formatted. To
stamp the { character, it must be escaped by duplicating it: {{.

String values

‹value› The following values are supported:

Title: the document’s title
Author: the name of the person who created the document
Subject: the subject of the document
Creator: the original application that created the document
Producer: the application that created the PDF

Example: Stamp the document author.

Text Result

Author: {Author} Author: Peter Pan

Date values

‹value› The following values are supported:

UTC: the current time in UTC
LocalTime: the current local time
CreationDate: the date and time the document was originally created
ModDate: the date and time the document was most recently modified

‹format› The default format is a localedependent date and time representation. Alternatively a format
string as accepted by strftime() can be specified.

Example: Stamp the current local time with the default format.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 74/121

Text Result

Received: {LocalTime} Received: Thu Aug 23 14:55:02 2001

Example: Stamp the current date.

Text Result

Date: {LocalTime:%d. %m. %Y} Date: 23. 8. 2011

Number values

‹value› The following values are supported:

PageNumber: the page number. Note that when updating the content of an existing stamp as described
inModify content of existing stamps, the new content can only containPageNumber if the exising stamp
also used PageNumber.
PageCount: the number of pages in the document

Optionally, an offset can be appended to the‹value›, where positive offsets start with+ and negative with
-. For example {PageCount+2} to add or {PageCount-2} to subtract 2 from the actual page count.

‹format› Optionally a format string as accepted by printf() can be specified.

Example: Stamp the page count.

Text Result

{{PageCount}} = {PageCount} {PageCount} = 10

Example: Stamp the current date and time onto each page’s lower right corner.

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">
 <stamp page="all" relativepos="-10 10">
 <text font="Arial" size="10" format="true">Date: {LocalTime}</text>
 </stamp>
</pdfstamp>

Images and geometric shapes

<image> Add Image

rect="‹x› ‹y› ‹w› ‹h›" (required)
The rectangle where the image is to be placed at. ‹x› and‹y› correspond to the location (lower left corner),
and ‹w› and ‹h› to width and height of the image, e.g. 100 200 50 50

src="‹url›" (required)
The URL or path to the file17, e.g. C:/pictures/image1.jpg or http://www.mydomain.com/im
age1.jpg.

17 Prior to version 4.10.13.0 of the 3-Heights® PDF Security API, this attribute was called filename.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 75/121

compression="‹value›" (optional)
By default, bitonal images are compressed with CCITTFax, continuous tone images with DCT and indexed
images with Flate. To explicitly set the compression, use this property.

Supported values are:

Flate: Flate encoded
DCT: DCT (JPEG) encoded
CCITTFax: CCITT G4 encoded

<fillrectangle> Add Filled Rectangle

rect="‹x› ‹y› ‹w› ‹h›" (optional)
The coordinates and size of the rectangle. If this value is omitted, the rectangle fills the entire area of the
stamp.

color="‹r› ‹g› ‹b›" (optional)
The fill color of the rectangle. The color as RGB value, where all values must be in the range from0.0 to 1.0.
The default is black: "0 0 0"

alpha="‹ca›" (optional)
The opacity of the rectangle. 1.0 for fully opaque, 0.0 for fully transparent.

Default: 1.0

The PDF/A-1 standard does not allow transparency. Therefore, for PDF/A-1 conforming input files you must
not set alpha to a value other than 1.0.

<strokerectangle> Add Stroked Rectangle

linewidth="‹f›" (optional)
Set the line width in points, e.g. 1.0 (default).

For the following parameter descriptions see <fillrectangle>.

rect="‹x› ‹y› ‹w› ‹h›"

color="‹r› ‹g› ‹b›"

alpha="‹ca›"

Transformations

The transform operators apply to stamp content defined within the tag. For example, this can be used to rotate
<text> or <image>.

<rotate> Rotation

angle="‹n›" (required)
Rotate by ‹n› degrees counterclockwise, e.g. 90

origin="‹x› ‹y›" (required)
Set the origin of the rotation in points, e.g. 100 100

<translate> Coordinate Translation

offset="‹x› ‹y›" (required)
The ‹x› (horizontal) and ‹y› (vertical) offset in points. A translation by x y is equal to a transformation by
1 0 0 1 x y.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 76/121

<transform> Coordinate Transformation

matrix="‹a› ‹b› ‹c› ‹d› ‹x› ‹y›" (required)
The transformation matrix to scale, rotate, skew, or translate.

Examples:

1. Identity: 1 0 0 1 0 0
2. Scale by factor 2 (double size): 2 0 0 2 0 0
3. Translate 50 points to left, 200 up: 1 0 0 1 50 200
4. Rotate by x: cos(x) sin(x) -sin(x) cos(x) 0 0

For 90° (= 𝜋/2) that is: 0 1 -1 0 0 0

9.2 Examples

9.2.1 Example 1: Simple stamps

Apply two simple stamps.

First stamp: Stamp text “Simple Stamp” on in upper left corner of all pages.

Second stamp: Stamp image lena.tif rotated by 90° and located at the center of the top corner of the first
page.

example1.xml:

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">

 <stamp page="all" name="simple stamp"
 relativepos="10 -10" size="160 0">
 <text align="left middle"
 font="Arial" size="20" fontencoding="WinAnsi"
 text="Simple Stamp" />
 </stamp>

 <stamp page="first"
 relativepos="0 -10" align="center">
 <rotate angle="90" origin="50 50">
 <image rect="0 0 100 100"
 filename="C:\images\lena.tif"/>
 </rotate>
 </stamp>

</pdfstamp>

Result of example1.xml.

9.2.2 Example 2: Modify “Simple Stamp”

Modify "simple stamp" from Example 1: Simple stamps.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 77/121

The stamp "simple stamp" can be modified by applying the following stamp XML file to the output file of the
example above. Note that since position and size of the stamp remain unchanged, the respective attributes can be
omitted.

The second stamp applied in Example 1 is not modified.

example2.xml:

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">
 <stamp name="simple stamp">
 <text align="left middle"
 color="1 0 0"
 font="Arial" size="20" fontencoding="WinAnsi"
 text="Modified Stamp" />
 </stamp>
</pdfstamp>

Result of example2.xml.

9.2.3 Example 3: Add watermark text diagonally across pages

The stamp is specified for an A4 page. On each page the stamp is applied to, it is scaled (scale="relToA4") and
rotated (align="transverse") to fit the page.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 78/121

example3.xml:

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">
 <stamp page="all"
 scale="relToA4"
 align="transverse"
 type="foreground">
 <text mode="stroke"
 font="Arial,Bold" size="60"
 >WATERMARK TEXT</text>
 </stamp>
</pdfstamp>

Result of example3.xml.

9.2.4 Example 4: Apply stamp to long edge of all pages

Stamp has a light gray background and a black border.

example4.xml:

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">
 <stamp page="all" size="802 28"
 relativepos="5 0" align="middle" rotate="90"
 scale="relToA4" autoorientation="true"
 alpha="0.75" type="foreground">
 <fillrectangle color="0.8 0.8 0.8"/>
 <strokerectangle/>
 <text align="center middle"
 font="Arial" size="20"
 text="stamp on long edge"/>
 </stamp>
</pdfstamp>

Result of example4.xml.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 79/121

9.2.5 Example 5: Stamp links

Stamp a list of links.

example5.xml:

<?xml version="1.0" encoding="utf-8"?>
<pdfstamp xmlns="http://www.pdf-tools.com/pdfstamp/">
 <stamp page="first" type="content" relativepos="-10 10" >
 <text font="MyriadPro" size="20" >Bookmarks:
- <link
 uri="http://www.pdf-tools.com/...">Product website</link>
- <link
 uri="http://www.pdf-tools.com/.../seca.pdf">Manual</link>
- <link
 uri="https://www.pdf-online.com/osa/secure.aspx">Online sample</link>
</text>
 </stamp>
</pdfstamp>

Result of example5.xml.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 80/121

10 Error handling

Most methods of the 3-Heights® PDF Security API can either succeed or fail depending on user input, the state of
the PDF Security API, or the state of the underlying system. It is important to detect and handle these errors to get
accurate information about the nature and source of the issue at hand.

Methods communicate their level of success or failure using their return value. The return values to be interpreted
as failures are documented in the Interface reference. To identify the error on a programmatic level, check the
ErrorCode property. The ErrorMessage property provides a human readable error message, which describes
the error.

Example:

public Boolean Open(string file, string password)
{
 if (!doc.Open(file, password))
 {
 if (doc.ErrorCode == PDFErrorCode.PDF_E_PASSWORD)
 {
 password = InputBox.Show("Password incorrect. Enter correct password:");
 return Open(file, password);
 }
 else
 {
 MessageBox.Show(String.Format(
 "Error {0}: {1}", doc.ErrorCode, doc.ErrorMessage));
 return false;
 }
 }
 [...]
}

Note: When validating signatures using ValidateSignature, validation
warnings are returned using ErrorCode. Therefore, this method is special be
cause ErrorCode can be meaningful, even if the method returned True. See
the method’s documentation for a detailed description.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 81/121

11 Tracing

The 3-Heights® PDF Security API contains tracing functionality that logs runtime information to a file. No confidential
data, such as the content of processed files or passwords, are traced. The tracing functionality is designed to provide
useful information to Pdftools’s support team for support requests. Tracing is not active by default and can be
activated by the customer under the guidance of the support team. Nonetheless, activating tracing and sharing
the information is optional and there is no obligation to do so.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 82/121

12 Interface reference

Note: This manual describes the COM interface only. Other interfaces (C, Java,
.NET) work similarly, i.e. they have calls with similar names and the call sequence
to be used is the same as with COM.

12.1 PdfSecure Interface

12.1.1 AddDocMDPSignature

Method: Boolean AddDocMDPSignature(PdfSignature pSignature, Short
accessPermissions)
License feature: Signature

Add a document MDP (modification detection and prevention) signature. A PDF document can, at most, contain
one MDP signature. A DocMDP signature defines the access permissions of the document. It should not be com
bined with standard encryption, i.e. the function SaveAs should not apply encryption.

PDF documents with DocMDP signatures added with the 3-Heights® PDF Security API require Acrobat 7 or later to
be opened. Since DocMDP signatures were introduced in the PDF Reference 1.6, they cannot be applied to PDF/A-1
input files unless the ForceSignature property is set to True.

Parameters:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature must
be set before it is added.

accessPermissions [Short] The access permissions granted are one of the following three values:

1. No changes to the document are permitted; any change to the document invalidates the signature.
2. Permitted changes are filling in forms, instantiating page templates, and signing; other changes invalidate

the signature.
3. Permitted changes are the same as for 2, as well as annotation creation, deletion, and modification; other

changes invalidate the signature.

Returns:

True Successfully added the signature to the document. Note: At this point, it is not verified whether the certificate
is valid or not. If an invalid certificate is provided, the SaveAs function fails later on.

False Otherwise.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 83/121

12.1.2 AddPreparedSignature

Method: Boolean AddPreparedSignature(PdfSignature pSignature)
License feature: Signature

Add a signature field including an appearance but without a digital signature. This method must be called prior to
SaveAs or SaveInMemory and should only be used in combination with SignPreparedSignature.

Parameter:

pSignature [PdfSignature] The digital signature from which the field and appearance is created. The
properties of the signature must be set before it is added.

Returns:

True Successfully prepared signature.

False Otherwise.

12.1.3 AddSignature

Method: Boolean AddSignature(PdfSignature pSignature)
License feature: Signature

Add a digital signature to the document. The signature is defined using a PdfSignature object. This method
must be called prior to SaveAs. Do not dispose of the PdfSignature object until the associated document has
been saved or closed.

More information on applying digital signatures can be found in Creating electronic signatures.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature must
be set before it is added.

Returns:

True Successfully added the signature to the document.

Note: At this point, it is not verified whether the certificate is valid or not. If an
invalid certificate is provided, the SaveAs function fails later on.

False Otherwise.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 84/121

12.1.4 AddSignatureField

Method: Boolean AddSignatureField(PdfSignature pSignature)
License feature: Signature

Add a signature field only. This method adds a field, which is meant to be signed manually in a later step. This
method must be called prior to SaveAs or SaveInMemory.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. The properties of the signature must
be set before it is added.

Returns:

True Successfully added the signature field to the document.

False Otherwise.

12.1.5 AddStamps, AddStampsMem

Method: Boolean AddStamps(String FileName)
License feature: Stamping

Method: Boolean AddStampsMem(Variant MemBlock)
License feature: Stamping

Add a stamp XML file. This method must be called after the input file is opened and before the save operation. For
more information about stamping, see Stamping.

12.1.6 AddTimeStampSignature

Method: Boolean AddTimeStampSignature(PdfSignature pSignature)
License feature: Signature

Add a document timestamp. The following signature properties must be set: TimeStampURL. The following signa
ture properties may be set: Provider, TimeStampCredentials.

PDF documents with document timestamp signatures require Acrobat X or later to be opened. Since this type of
signature was introduced in the PDF2.0, they cannot be applied to PDF/A-1 input files unless theForceSignature
property is set to True.

12.1.7 AddValidationInformation

Method: Boolean AddValidationInformation(PdfSignature pSignature)
License feature: Signature

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 85/121

Add signature validation information to the document security store (DSS). This information includes:

1. All certificates of the signing certificate’s trust chain, unless they are already embedded into the signature.
2. Revocation data (OCSP or CRL) for all certificates that support revocation information.

Validation information for embedded timestamp tokens is added as well.

This requires a Cryptographic provider, which has been opened using BeginSession. All types of cryptographic
providers support this method. However, this method fails when using a provider whose certificate store is missing a
required certificate. Because providers of digital signature services do not have a certificate store, it is recommended
to use either the PKCS#11 or the Windows Cryptographic provider.

This method can be used to create signatures with longterm validation material or to extend the longevity of exist
ing signatures. See Creating a PAdES signature for more information.

Note: This method does not validate the signature, but only downloads the
information required.

Note: Adding validation information for expired certificates is not possible.
Therefore, it is crucial to extend the longevity of signatures before they expire.

Parameter:

pSignature [PdfSignature] The digital signature for which validation information is to be added. This
must be an existing signature obtained using GetSignature from the currently opened document.

Returns:

True Successfully added complete validation information for the signature to the document.

False Otherwise.

12.1.8 AutoLinearize

Property (get, set): Boolean AutoLinearize
Default: False

Note: With this option enabled, nonLatin characters in the output file name
are not supported.

Automatically decide whether to linearize the PDF output file for fast web access.

Applying linearization can lead to a large increase in file size for certain documents. Enabling this option lets the
3-Heights® PDF Security API automatically apply linearization or refrain from doing so based on the estimated file
size increase.

With this option enabled, PDF 2.0 documents are automatically excluded from linearization.

See also Linearize for more information for linearized PDFs.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 86/121

Note: If this property is set to True, then the value given to Linearize is
ignored.

12.1.9 BeginSession

Method: Boolean BeginSession(String Provider)

TheBeginSession andEndSessionmethods support bulk digital signing by keeping the session to the security
device (HSM, token or cryptographic provider) open. See Guidelines for mass signing for more guidelines.

For backwards compatibility, the use of these methods is optional. If used, the Provider property may not be set.
If omitted, an individual session to the provider indicated by the Provider property is used for each signature
operation.

Parameter:

Provider [String] See property Provider.

Returns:

True Session started successfully.

False Otherwise.

12.1.10 Close

Method: Boolean Close()

Close an opened input file. If the document is already closed, the method does nothing.

Returns:

True The file was closed successfully.

False Otherwise.

12.1.11 ErrorCode

Property (get): TPDFErrorCode ErrorCode

This property can be accessed to receive the latest error code. This value should only be read if a function call on
the PDF Security API has returned a value, which signales a failure of the function (see Error handling). See also

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 87/121

enumeration TPDFErrorCode. Pdftools error codes are listed in the header file bseerror.h. Please note that
only few of them are relevant for the 3-Heights® PDF Security API.

12.1.12 ErrorMessage

Property (get): String ErrorMessage

Return the error message text associated with the last error (see property ErrorCode). This message can be used
to inform the user about the error that has occurred. This value should only be read if a function call on the PDF
Security API has returned a value, which signals a failure of the function (see Error handling)

Note: Reading this property if no error has occurred can yield Nothing if no
message is available.

.

12.1.13 EndSession

Method: Boolean EndSession()

Ends the open session to the security device.

See BeginSession.

12.1.14 ForceEncryption

Property (get, set): Boolean ForceEncryption
Default: False

File encryption is not allowed by the PDF/A standard. Therefore, 3-Heights® PDF Security API aborts and returns
an error, when encryption is configured and an input file is PDF/A. Use this option to enable encryption of PDF/A
conforming files. The conformance of the output file is downgraded to PDF.

12.1.15 ForceIncrementalUpdate

Property (get, set): Boolean ForceIncrementalUpdate
Default: False

An incremental update is a copy of the original file with all modifications appended to its end. This leaves the original
file intact, such that it can later be extracted using GetRevision, GetRevisionFile, GetRevisionStream.

By default, modifications to signed files are performed as incremental updates, which preserves all signatures. Using
this property, an incremental update can be forced for other files as well, e.g. in order to preserve external signatures.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 88/121

When applying an incremental update, all encryption parameters (most importantly the user password) must be
the same as in the input file.

Unless a revision is signed, there might be white space characters at the revision’s end for which it is unclear to which
revision they belong. These white space characters have no influence on the revision’s visual appearance or content.
However, they may be important in order to preserve external signaures. For a reliable extraction of a revision, it is
therefore recommended to save the original file’s size. The revision can then be extracted from the updated file by
reading all data up to the original file’s size.

12.1.16 ForceSignature

Property (get, set): Boolean ForceSignature
Default: False

Force signature allows DocMDP (PDF 1.6) and timestamp signatures (PDF 2.0) on PDF/A-1 documents. The output
file’s version is upgraded and PDF/A conformance removed. Thus, the output file contains the signature, but is no
longer PDF/A-1.

Applying a DocMDP or timestamp signature breaks PDF/A-1 conformance, therefore the default behavior is to abort
the operation with an error.

12.1.17 GetPdf

Method: Variant GetPdf()

Get the output file from memory. See also method SaveInMemory.

Returns:

A byte array containing the output PDF. In certain programming languages, such as Visual Basic 6, the type of the
byte array must explicitly be Variant.

12.1.18 GetRevision, GetRevisionFile, GetRevisionStream

Method: Variant GetRevision(Integer Revision)

Method: Boolean GetRevisionFile(Integer Revision, String FileName)

Method: Boolean GetRevisionStream(Integer Revision, Variant Stream)

Get the PDF document of a given revision number. This is useful to retrieve the state of the PDF document at the
time it has been signed. All incremental updates that have been applied after the given revision are ignored.

Parameters:

Revision [Integer] The revision number (beginning with 0).

FileName [String] The name of the file to write the revision to.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 89/121

Stream [Variant] The stream to write the revision to.

Returns:

The selected revision of the PDF file.

12.1.19 GetMetadata

Method: Variant GetMetadata()

Get the the XMP metadata of the input document as byte array. If the document does not contain XMP metadata,
Nothing is returned.

Returns:

The document XMP metadata as byte array.

12.1.20 GetSignature

Method: PdfSignature GetSignature(Long iSignature)
License feature: Signature

Get a signature field from the current document.

Parameter:

iSignature [Long] The selected signature in the document in the range from 0 to ‹n›-1, where 0 is the
first and n-1 the last signature. The total number of signatures ‹n› in the document can be retrieved using the
SignatureCount property.

Returns:

An interface to the PdfSignature.

12.1.21 GetSignatureCount

[Deprecated] Property (get, set): Long GetSignatureCount

Use the SignatureCount property instead.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 90/121

12.1.22 InfoEntry

Method: String InfoEntry(String Key)

Retrieve or add a keyvalue pair to the document info dictionary. Values of predefined keys are also stored in the
XMP metadata package.

Popular entries specified in the PDF Reference 1.7 and accepted by most PDF viewers are "Title", "Author",
"Subject", "Creator" (sometimes referred to as Application) and "Producer" (sometimes referred to as PDF
Creator).

Parameter:

Key [String] A key as string.

Returns:

The value as string.

Note: The getter does not return values of the input document, but merely
those that have previously been set using InfoEntry.

Examples in Visual Basic 6:

Set the document title.

doc.InfoEntry("Title") = "My Title"

Set the creation date to 13:55:33, April 5, 2010, UTC+2.

doc.InfoEntry("CreationDate") = "D:20100405135533 + 02'00'"

12.1.23 LicenseIsValid

Property (get): Boolean LicenseIsValid

Check if the license is valid.

12.1.24 Linearize

Property (get, set): Boolean Linearize
Default: False

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 91/121

Note: This property
is ignored when AutoLin
earize is set to True.

Note: With this option en
abled, nonLatin characters in
the output file name are not
supported.

Get or set whether to linearize the PDF output file, i.e. optimize file for fast web access.

The 3-Heights® PDF Security API does not support linearization of PDF 2.0 documents. For such documents, pro
cessing fails. To automatically disable linearization for PDF 2.0, use AutoLinearize.

A linearized document has a slightly larger file size than a nonlinearized file and provides the following main fea
tures:

When a document is opened in a PDF viewer of a web browser, the first page can be viewed without download
ing the entire PDF file. In contrast, a nonlinearized PDF file must be downloaded completely before the first
page can be displayed.
When another page is requested by the user, that page is displayed as quickly as possible and incrementally as
data arrives, without downloading the entire PDF file.

The above applies only if the PDF viewer supports fast viewing of linearized PDFs.

When enabling this option, then no PDF objects are stored in object streams in the output PDF. For certain input
documents this can lead to a significant increase of file size.

12.1.25 NoCache

Property (get, set): Boolean NoCache
Default: False

Get or set whether to disable the cache for CRL and OCSP responses.

Using the cache is safe, since the responses are cached as long as they are valid only. The option affects both signa
ture creation and validation.

See Caching of CRLs, OCSP, and timestamp reponses for more information on the caches.

12.1.26 NoDSS

Property (get, set): Boolean NoDSS
Default: False

Set this option to True to not embed revocation information (OCSP, CRL, and trust chain) in the document security
store (DSS) when signing documents. Use this option to work around issues with legacy software that does not
support the DSS. The use of the DSS is recommended for longterm (LTV) signatures.

12.1.27 Open

Method: Boolean Open(String Filename, String Password)

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 92/121

Open a PDF file, i.e. make the objects contained in the document accessible. If another document is already open,
it is closed first.

Parameters:

Filename [String] The file name and optionally, the file path, drive or server string according to the operating
systems file name specification rules.

Password [String] (optional) The user or the owner password of the encrypted PDF document. If this
parameter is left out, an empty string is used as a default.

Returns:

True The file could be successfully opened.

False The file does not exist, it is corrupt, or the password is not valid. Use the ErrorCode and ErrorMessage
properties for additional information.

12.1.28 OpenMem

Method: Boolean OpenMem(Variant MemBlock, String Password)

Open a PDF file, i.e. make the objects contained in the document accessible. If a document is already open, it is
closed first.

Parameters:

MemBlock [Variant] The memory block containing the PDF file given as a onedimensional byte array.

Password [String] (optional) The user or the owner password of the encrypted PDF document. If this
parameter is left out, an empty string is used as a default.

Returns:

True The document could be successfully opened.

False The document could not be opened, it is corrupt, or the password is not valid.

12.1.29 OpenStream

Method: Boolean OpenStream(Variant Stream, String Password)

Open a PDF file, i.e. make the objects contained in the document accessible. If a document is already open, it is
closed first.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 93/121

Parameters:

Stream [Variant] The stream providing the PDF file. The stream must support random access.

Password [String] (optional) The user or the owner password of the encrypted PDF document. If this
parameter is left out, an empty string is used as a default.

Returns:

True The document could be successfully opened.

False The document could not be opened, it is corrupt, or the password is not valid.

12.1.30 PageCount

Property (get): Long PageCount

Get the number of pages of an open document. If the document is closed or if the document is a collection (also
known as PDF portfolio), then this property is 0.

12.1.31 ProductVersion

Property (get): String ProductVersion

Get the version of the 3-Heights® PDF Security API in the format “A.C.D.E”.

12.1.32 RemoveLegacyStamps

Property (get, set): Boolean RemoveLegacyStamps
License feature: Stamping

Whether to remove stamps created by the PDF Batch Stamp Tool (pdstamp). The stamps must be removable, i.e.
they must have previously been added using the -e option. After adding removable stamps, the document must
not be modified, because this may make the removal of stamps impossible.

Stamps cannot be removed from signed documents, because this would break the signatures. Trying to do so
results in an error PDF_STMP_E_RMLEGACY. If breaking the signature is acceptable, they must be removed using
the RemoveSignatureFieldmethod.

This option can be used in combination with other operations, e.g. to add new stamps, to sign, or encrypt the result.

12.1.33 RevisionCount

Property (get): Integer RevisionCount

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 94/121

Return the number of revisions of the document (the number of incremental updates).

Although a linearized file looks like an incrementally updated file, it only counts as one revision.

See also GetRevision, GetRevisionFile, GetRevisionStream.

12.1.34 RemoveSignatureField

Method: Boolean RemoveSignatureField(Pdfsignature pSignature)
License feature: Signature

Remove a signature field. An empty signature field can be added using AddSignatureField. This method must
be called prior to SaveAs or SaveInMemory.

Removing signature fields breaks the remaining signatures. Therefore, it is important to first remove surplus signa
tures before signing.

Returns:

True Successfully removed the signature field.

False Otherwise.

12.1.35 SaveAs

Method: Boolean SaveAs(String FileName, String UserPw, String OwnerPw,
TPDFPermission PermissionFlags, Long KeyLength, String StrF, String StmF)

Create an output PDF document, apply the security settings and save the content from the input file to the output
file.

The last three parameters (KeyLength, StrF, StmF) are only relevant in specific cryptographic situations. In all
other cases, it is easiest to use the default values 128, "V2", "V2".

Parameters:

FileName [String] The file name and optionally the file path, drive or server string according to the operating
systems file name specification rules.

UserPw [String] (optional) Set the user password of the PDF document. If this parameter is omitted, the
default password is used. Use "" to set no password.

OwnerPw [String] (optional) Set the owner password of the PDF document. If this parameter is omitted, the
default password is used. Use "" to set no password.

PermissionFlags [TPDFPermission] (optional) The permission flags.

By default no encryption is used (-1). The permissions that can be granted are listed at the enumeration TPDF
Permission. To not encrypt the output document, set PermissionFlags to ePermNoEncryption, user and
owner password to "". In order to allow high quality printing, flags ePermPrint and ePermDigitalPrint
need to be set.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 95/121

KeyLength [Long] (optional, Default: 128) The key length is a determining factor of the strength of the
encrypting algorithm and the amount of time to break the cryptographic system. For RC4 the key length can
be any value from 40 to 128 that is a multiple of 8.

For AESV2 the key length is automatically set to 128, for AESV3 to 256. Notes:

Certain PDF viewers only support 40 and 128 bit encryption. Other tools, such as the 3-Heights® tools also
support other encryption key lengths
256 bit encryption requires Acrobat 9 or later.
If the selected permission flags require a minimum key length, the key length is automatically adjusted (e.g.
to 128 bits)

StrF [String] (optional, Default: "V2") Set the string crypt filter. Supported values are "None", "V2",
"RC4", "AESV2" and "AESV3". Setting this value to an empty string or Nothing, means the default filter is
used. Supported crypt filters are:

"None": The application does not decrypt data.
"V2" or "RC4": (PDF 1.2) The application asks the security handler for the encryption key and implicitly
decrypts data using the RC4 algorithm.
"AESV2": (PDF 1.6) The application asks the security handler for the encryption key and implicitly decrypts
data using the AES-V2 128 bit algorithm.
"AESV3": (PDF 1.7) The application asks the security handler for the encryption key and implicitly decrypts
data using the AES-V3 256 bit algorithm.

StmF [String] (optional, Default: "V2") Set the stream crypt filter. Supported values are "None", "V2",
"RC4", "AESV2" and "AESV3". Note that certain viewers require the stream crypt filter to be equal to the
string crypt filter, e.g. both must be RC4 or AES. Setting this value to an empty string or Nothing means the
default filter is used.

Returns:

True The opened document could successfully be saved to file.

False Otherwise. One of the following occurred18:

The output file or the signature cannot be created.
PDF_E_FILECREATE: Failed to create the file.
SIG_CREA_E_SESSION: Cannot create a session (or CSP).
SIG_CREA_E_STORE: The certificate store is not available.
SIG_CREA_E_CERT: The certificate cannot be found.
SIG_CREA_E_PRIVKEY: The private key is not available.
SIG_CREA_E_INVCERT: The signing certificate is invalid, because it has expired, is not yet valid, or was
revoked.
SIG_CREA_E_OCSP: Couldn’t get response from OCSP server.
SIG_CREA_E_CRL: Couldn’t get response from CRL server.
SIG_CREA_E_TSP: Couldn’t get response from timestamp server.
PDF_E_SIGLENGTH: Incorrect signature length.

Set permission flags equally to Acrobat 7:

In Acrobat 7, there are four different fields/check boxes that can be set. In brackets are the corresponding permission
flags.

Printing Allowed:

18 This is not a complete list. If SaveAs returns False, it is recommended to abort the processing of the file and log the error code and error
message.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 96/121

None ()
Low Resolution (ePermPrint)
High Resolution (ePermPrint + ePermDigitalPrint)

Changes Allowed:
None ()
Inserting, deleting and rotating pages (ePermModify)
Filling in form fields and signing existing signature fields (ePermAnnotate)
Commenting, filling in form fields, and signing existing signature fields (ePermAnnotate + ePermFill
Forms)
Any except extracting pages (ePermModify + ePermAnnotate + ePermFillForms)

Enable copying of text, images and other content (ePermCopy + ePermSupportDisabilities)
Enable text access for screen reader devices for the visually impaired (ePermSupportDisabilities)

These flags can be combined. For example to grant permission which are equal to Acrobat’s 7 “Printing Allowed:
High Resolution” and “Enable copying of text, images and other content”, set the flags ePermPrint + ePerm
Copy + ePermSupportDisabilities + ePermDigitalPrint.

12.1.36 SaveInMemory

Method: Boolean SaveInMemory(String UserPw, String OwnerPw, TPDFPermission
PermissionFlags, Long KeyLength, String StrF, String StmF)

Save the output PDF in memory. After the Close call, it can be accessed using the GetPdfmethod.

All parameters are identical to the SaveAsmethod.

See also Using the in-memory functions.

Returns:

True The document could be saved in memory successfully.

False Otherwise.

12.1.37 SaveAsStream

Method: Boolean SaveAsStream(Variant Stream, String UserPw, String OwnerPw, Long
KeyLength, String StrF, String StmF)

Parameter:

Stream [Variant] The stream the output file is written to. The stream must support read, write, and random
access.

All other parameters and the return value are identical to the SaveAsmethod.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 97/121

12.1.38 SetLicenseKey

Method: Boolean SetLicenseKey(String LicenseKey)

Sets the license key.

12.1.39 SetMetadata, SetMetadataStream

Method: Boolean SetMetadata(String FileName)

Method: Boolean SetMetadataStream(Variant Stream)

Set the the XMP metadata of the document.

Parameters:

FileName [String] The file name where the metadata are read from.

Stream [Variant] The stream where the metadata are read from.

Returns:

Whether or not the metadata has been set successfully.

12.1.40 SetSessionProperty

Method: Boolean SetSessionPropertyString(String Name, String Value)

Method: Boolean SetSessionPropertyBytes(String Name, Variant Value)

Providerspecific session configuration.

Properties have to be set before calling BeginSession and are deleted when calling EndSession.

Parameters:

Name [String] The name of the property. The names that are supported are specific to the provider used with
BeginSession.

Value [String] The value of the property as string.

Value [Variant] The value of the property as byte array.

12.1.41 SignatureCount

Property (get): Long SignatureCount

Return the number of signature fields. If 0 is returned, it means there is no digital signature in the document.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 98/121

12.1.42 SignPreparedSignature

Method: Boolean SignPreparedSignature(PdfSignature pSignature)
License feature: Signature

Create a digital signature for an existing signature field, which was previously created using theAddPreparedSig
naturemethod. This method must be called prior to SaveAs or SaveInMemory.

Parameter:

pSignature [PdfSignature] The digital signature that is to be added. This must be the same signature as
used in AddPreparedSignature.

Returns:

True Successfully added the signature to the document.

False Otherwise.

12.1.43 SignSignatureField

Method: Boolean SignSignatureField(Pdfsignature pSignature)
License feature: Signature

Sign an empty signature field. An empty signature field can be added using AddSignatureField. This method
must be called prior to SaveAs or SaveInMemory.

Returns:

True Successfully placed the signature into the signature field.

False Otherwise.

12.1.44 Terminate

Method: Void Terminate()

Terminate all open sessions, and finalize and unload all PKCS#11 drivers. Calling Terminate is mandatory if a
PKCS#11 device is used for signature creation or validation (see PKCS#11 provider). Some drivers require Termi
nate to be called. Otherwise, your application might crash and/or your HSM, USB token, or smart card may not be
unlocked.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 99/121

Make sure to end all open sessions and dispose of all PdfSecure objects before calling Terminate. After calling
Terminate, the process may not call any other methods of this class.

When using the C interface, Terminate may not be called from the context of the destructor of a global or static
object, an atexit() handler, nor the DllMain() entry point.

12.1.45 TestSession

Method: Boolean TestSession()

Test if the current session is still alive.

Returns:

True Subsequent calls to SaveAs and SaveInMemory are likely to succeed.

False Subsequent calls to SaveAs and SaveInMemory are unlikely to succeed. Error codes are the same as in
SaveAs, where applicable.

12.1.46 ValidateSignature

Method: Boolean ValidateSignature(PdfSignature pSignature)
License feature: Signature

Validate an existing digital signature, which was previously retrieved using the GetSignaturemethod. The com
ponent supports the verification of signatures including timestamps using cryptographic tokens and hardware se
curity modules (HSM) through their PKCS#11 interface.

The validity checks are carried out at the time indicated either by the embedded timestamp, if present, or by the
signing time indicated in the PDF signature field object otherwise. Furthermore, this method extracts the following
values from the cryptographic signature and sets the respective properties of the PdfSignature object: Date,
Email, Name, Issuer, SignerFingerprint, and TimeStampFingerprint.

If you get the error codeSIG_VAL_E_FAILURE, your cryptographic provider does not offer the algorithms used for
the signature. For example, the default provider (CryptoAPI of Windows Cryptographic Provider) does not support
the SHA-2 hash algorithms. In this case, choose another provider.

Parameter:

pSignature [PdfSignature] The digital signature that is to be validated.

Returns:

True The digital signature is valid, i.e. the document has not been modified. If other problems are detected during
signature validation, the ErrorCode property may have one of the following values:

1. SIG_VAL_W_ISSUERCERT
2. SIG_VAL_W_TSP

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 100/121

3. SIG_VAL_W_TSPCERT
4. SIG_VAL_W_NOREVINFO
5. SIG_VAL_W_NOTRUSTCHAIN
6. SIG_VAL_W_TSPNOREVINFO
7. SIG_VAL_W_PADES

The order of the list defines the priority of the error codes from highest to lowest. If multiple problems are
detected, the error code with the highest priority is returned.

False The signature is corrupt or the document has been modified.

See also enumeration TPDFErrorCode.

12.2 PdfSignature Interface

This interface lets you create a signature and set its position and appearance. The visual part of the signature consists
of two parts. Each part supports multiline text. The string of both parts are generated automatically based on the
signature properties if not set manually.

12.2.1 ContactInfo

Property (get, set): String ContactInfo
Default: ""

Add a descriptive text as signer contact info, e.g. a phone number. This enables a recipient to contact the signer to
verify the signature. This is not required in order to create a valid signature.

If this property is set to an empty string, no entry is created.

12.2.2 Contents

Property (get, set): VARIANT Contents

Get the Contents of the signature as byte array. This is the actual digital signature, whose format depends on the
type of digital signature.

12.2.3 Date

Property (get, set): String Date
Default: "D:00000000000000Z" (set to current date when signature is

added)

This is the date when the signature is added. When this property is not set, the current time and date is used. The
format of the date is: "D:YYYYMMDDHHMMSSZ". The meanings are:

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 101/121

D Header of Date Format

YYYY year

MM month

DD day

HH hour

MM minutes

SS seconds

Z UTC (Zulu) Time

Example for December 17, 2007, 14:15:13, GMT: "D:20071217141513Z".

Note: This property is set at the time when the signature is applied to the
document. If this property is set to an empty string, no entry is created.

12.2.4 DocMdpPermissions

Property (get): Integer DocMdpPermissions

Return the document access permissions of a DocMDP signature. For other types of signatures, 0 is returned. See
AddDocMDPSignature for a description of valid permission values.

12.2.5 DocumentHasBeenModified

Property (get): Boolean DocumentHasBeenModified

Get whether the document has been modified (True) or not (False) since the selected signature was added.

12.2.6 Email

Property (get): String Email

This property represents the email address of the signer. The method ValidateSignature extracts the address
from the signing certificate’s subject and sets this property.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 102/121

12.2.7 EmbedRevocationInfo

Property (get, set): Boolean EmbedRevocationInfo
Default: True

Embed revocation information such as online certificate status response (OCSP - RFC 2560) and certificate revoca
tion lists (CRL - RFC 3280).

Revocation information of a certificate is provided by a validation service at the time of signing and acts as proof that
at the time of signing the certificate is valid. This is useful because even when the certificates expires or is revoked
at a later time, the signature in the signed document remains valid.

Embedding revocation information is optional but suggested when applying advanced or qualified electronic sig
natures.

This property is not supported by all cryptographic providers and never for document timestamp signatures. For
these cases, AddValidationInformationmust be used.

Revocation information is embedded for the signing certificate and all certificates of its trust chain. This implies that
both OCSP responses and CRLs can be present in the same message.

The downsides of embedding revocation information are the increase of the file size (normally by around 20 KB)
and that it requires a web request to a validation service, which delays the process of signing. For mass signing, it is
suggested to use the caching mechanism. See Caching of CRLs, OCSP, and timestamp reponses.

Embedding revocation information requires an online connection to the CA that issues them. The firewall must be
configured accordingly. In case a web proxy is used, it must be ensured the following MIME types are supported
when using OCSP (not required for CRL):

application/ocsprequest

application/ocspresponse

If EmbedRevocationInfo is set to True but the embedding failed, e.g. because the OCSP server is not reachable,
the return value of SaveAs is False, and the ErrorCode after SaveAs is SIG_CREA_E_OCSP.

12.2.8 FillColor

Property (get, set): Long FillColor
Default: 16761024 (red = 192, green = 192, blue = 255)

This property represents the color of the signature’s background as an RGB value.

To avoid setting a color, i.e. keep the rectangle transparent, set the FillColor to -1. This is particularly useful in
combination with adding an image to the signature.

Color examples: Color values are

color = ‹red› + ‹green›×256 + ‹blue›×256×256,

where ‹red›, ‹green› and ‹blue› assume values from 0 to 255.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 103/121

Red 255,0,0 255

Green 0,255,0 65'280

Blue 0,0,255 16'711'680

Cyan 0,255,255 16'776'960

Magenta 255,0,255 16'711'935

Yellow 255,255,0 65'535

Black 0,0,0 0

Gray 128,128,128 8'421'504

White 255,255,255 16'777'215

12.2.9 FieldName

Property (get, set): String FieldName

Get or set the name of the signature form field.

If a signature is added to the document and this property is not set, a unique field name is generated.

12.2.10 Filter

Property (get): String Filter

Get the name of the preferred signature handler for the signature, such as "Adobe.PPKLite".

12.2.11 FontName1

Property (get, set): String FontName1
Default: "Arial"

This property defines the font used in upper text, i.e. the text that is set by the property Text1. The font can either
be specified as a path to the font file, e.g."C:\Windows\Fonts\arial.ttf", or as a font name, such as"Times
New Roman,Bold". When using a font name, the corresponding font must be present in one of the font directories
described in Fonts.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 104/121

12.2.12 FontName2

Property (get, set): String FontName2
Default: FontName1

This property represents the path to the font name used in lower text, i.e. the text that is set by the propertyText2.
The property works analogously to FontName1.

12.2.13 Font1Mem

Property (set): Variant Font1Mem

Set the font used in upper text (see FontName1) by passing the font as a memory buffer.

12.2.14 Font2Mem

Property (set): Variant Font2Mem

Set the font used in lower text (see FontName2) by passing the font as a memory buffer.

12.2.15 FontSize1

Property (get, set): Single FontSize1
Default: 16

Define the font size of the Text1.

12.2.16 FontSize2

Property (get, set): Single FontSize2
Default: 8

Define the font size of the Text2.

12.2.17 HasSignature

Property (get): Boolean HasSignature

Get whether the signature has an actual digital signature object or not.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 105/121

IfTrue, thisPdfSignature object can be validated usingValidateSignature. IfFalse, thisPdfSignature
object can be signed using SignSignatureField.

12.2.18 ImageFileName

Property (get, set): String ImageFileName
Default: ""

Define the path to an image file that is to be added to the signature. The image is centered and scaled down pro
portionally to fit into the given rectangle. If the path is Nothing, or the image does not exist, the appearance’s
background is a filled rectangle using the colors FillColor and StrokeColor.

If you want the appearance to contain the image only and no text, set the property Text2 to a space " ".

12.2.19 Issuer

Property (get, set): String Issuer
Default: ""

Set the issuer of the certificate. The"Issuer" corresponds to the common name (CN) of the issuer. In the Windows’
certificate store, this corresponds to "Issued by".

This property can be used to select the signer certificate for signing (see Cryptographic provider).

12.2.20 LineWidth

Property (get, set): Single LineWidth
Default: 2

This is the thickness of the line surrounding the visual appearance of the signature.

12.2.21 Location

Property (get, set): String Location
Default: ""

This is the physical location where the signature was added. For example, "Zurich, Switzerland".

If this property is set to an empty string, no entry is created.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 106/121

12.2.22 Name

Property (get, set): String Name
Default: ""

To sign a PDF document, a valid existing certificate name must be provided.

The “Name” corresponds to the common name (CN) of the subject.

In the Windows certificate store, this corresponds to “Issued to”.

When using a Windows OS, the certificate must be available in the Windows certificate store. See also Digital signa
tures.

This property can be used to select the signer certificate for signing (see Cryptographic provider).

12.2.23 PageNo

Property (get, set): Long PageNo
Default: -1 (last page)

Define the page number where the signature is to be added to the document. If an invalid page number is set, it is
added to the last page.

The numbers are counted starting from 1 for the first page to the value of PageCount for the last page.

12.2.24 Provider

Property (get, set): String Provider
Default: (Windows only) "Microsoft Base Cryptographic Provider v1.0"

This property specifies the cryptographic provider used to create and verify signatures.

For more information on the different providers available, see the description in the respective subsection of the
section Cryptographic provider.

When using the Windows Cryptographic Provider, the value of this property is to be set to a string with the
following syntax:

"[ProviderType:]Provider[;PIN]"

If the name of the provider is omitted, the default provider is used.

Example: "123456" being the PIN code:

Provider = "Microsoft Base Cryptographic Provider v1.0;123456"

Provider = ";123456"

When using the PKCS#11 provider, the value of this property is to be set to a string with the following syntax:

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 107/121

"PathToDll;SloId;Pin"

Example:

Provider = "\WINDOWS\system32\siecap11.dll;4;123456"

When using any of the service providers, such as the Swisscom All-in signing service, the value of this property
is essentially the url of the service endpoint:

"http[s]://server.servicedomain.com:8080/url"

12.2.25 ProxyURL

[Deprecated] Property (get, set): String ProxyURL
Default: ""

This property has been deprecated. For more information, see Using a proxy.

12.2.26 ProxyCredentials

[Deprecated] Property (get, set): String ProxyCredentials
Default: ""

This property has been deprecated. For more information, see Using a proxy.

12.2.27 Reason

Property (get, set): String Reason
Default: ""

Set or get the descriptive text for why the digital signature was added. It is not required to create a valid signature.

If this property is set to an empty string, no entry is created.

12.2.28 Rect

Property (get, set): Variant Rect
Default: [0, 0, 0, 0]

Set or get the position and size of the digital signature annotation. The default is an invisible signature.

The position is defined by the four values for the lowerleft (x1, y1) and upperright (x2, y2) corner of the rectangle.
The units are PDF points (1 point = 1/72 inch, A4 = 595 x 842 points, Letter = 612 x 792 points) measured from the

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 108/121

lower left corner of the page. If either the width or height is zero or negative, an invisible signature is created, i.e.
no visible appearance is created for the signature. To create a signature in the lower left corner, set the rectangle to
[10, 10, 210, 60].

If you are using this property in a programming language that does not support theVariant type, to find out what
type you should use, create aPdfSignature object, and look at the default value of the property in the debugger.

12.2.29 Revision

Property (get): Integer Revision

Return the revision number of the PDF document associated with this signature. The associated PDF document can
be retrieved using the method GetRevision, GetRevisionFile, GetRevisionStream.

12.2.30 SerialNumber

Property (get, set): String SerialNumber

The serial number with the issuer can be used to select a certificate for signing.

This property is a hex string as displayed by the “Serial number” field in the Microsoft Management Console (MMC),
e.g. "49 cf 7d d1 6c a9".

This property can be used to select the signer certificate for signing (see description of Cryptographic provider in
use).

12.2.31 SignerFingerprint

Property (get, set): Variant SignerFingerprint

The SHA1 fingerprint of the signer certificate. This property can be used to select the signer certificate for signing
(see Cryptographic provider). After validating a signature, this property contains the validated signature’s finger
print.

12.2.32 SignerFingerprintStr

Property (get, set): String SignerFingerprintStr

The hex string representation of the signer certificate’s SHA1 fingerprint. This property can be used to select the
signer certificate for signing (see Cryptographic provider).

All characters outside the ranges 0-9, a-f and A-F are ignored. In the Microsoft Management Console, the
“Thumbprint” value can be used without conversion if the “Thumbprint algorithm” is “sha1”. For example, b5 e4
5c 98 5a 7e 05 ff f4 c6 a3 45 13 48 0b c6 9d e4 5d f5.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 109/121

12.2.33 Store

Property (get, set): String Store
Default: "MY"

For theWindows Cryptographic Provider, this defines the certificate store from where the signing certificate should
be taken. This depends on the OS. The default is MY. Other supported values are: CA or ROOT.

12.2.34 StoreLocation

Property (get, set): Integer StoreLocation
Default: 1

For the Windows Cryptographic Provider, this defines the location of the certificate store from where the signing
certificate should be taken. Supported are:

0 Local Machine

1 Current User (default)

For more information, see Windows Cryptographic Provider.

12.2.35 StrokeColor

Property (get, set): Long StrokeColor
Default: 8405056 (red = 64, green = 64, blue = 128)

This is the color of the signature’s border line as an RGB value. For examples of RGB color values, see FillColor;

To avoid setting a color, i.e. keep it transparent, set the StrokeColor to -1.

12.2.36 SubFilter

Property (get, set): String SubFilter

Indicates the encoding of the signature. This value is set when extracing signatures using GetSignature and can
be set when creating new signatures with AddSignature. The following are common SubFilter values:

adbe.pkcs7.detached (PDF 1.6) Legacy PAdES Basic (ETSI TS 102 778, Part 2) signature used for document
signatures (AddSignature) and DocMDP signatures (AddDocMDPSignature).

ETSI.CAdES.detached (PDF 2.0) PAdES signature as specified by European Norm ETSI EN 319 142. This type is
used for document signatures (AddSignature) and DocMDP signatures (AddDocMDPSignature). See Cre
ating a PAdES signature for more information.

ETSI.RFC3161 (PDF 2.0) Document timestamp signature (AddTimeStampSignature).

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 110/121

12.2.37 Text1

Property (get, set): String Text1
Default: ""

This is the upper text that is added to the signature.

If this property is set to blank, the signature name is added to the upper text line of the visual signature.

To position text, use the following syntax: ‹tab›‹x›,‹y›‹delimiter›‹text›

‹tab› tabulator

‹x›, ‹y› integers

‹delimiter› Single character such as space

‹text› Any text string not containing a ‹tab›

Example: for Visual Basic .NET

Dim sig As New PdfSecureAPI.Signature
...
sig.Text1 = Microsoft.VisualBasic.vbTab & "5,50 Peter Pan"
sig.Text2 = Microsoft.VisualBasic.vbTab & "15,25 Signed this document"

12.2.38 Text1Color

Property (get, set): Long Text1Color
Default: 0 (black)

This property defines the color of the upper text, i.e. the text that is set by the propertyText1. For examples of RGB
color values, see FillColor;

12.2.39 Text2

Property (get, set): String Text2
Default: ""

This is the lower text that is added to the signature. The text can be multilined by using linefeed (’\n’, 0xA).

If this property is set to blank, a text threeline text is constructed that consists of:

A statement who applied to signature
The reason of the signature
The date

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 111/121

See also property Text1. If you want the appearance to not contain any text, set this property to a space " ".

12.2.40 Text2Color

Property (get, set): Long Text2Color
Default: 0 (black)

This property defines the color of the lower text, i.e. the text that is set by the property Text2. For examples of RGB
color values, see FillColor;

12.2.41 TimeStampCredentials

Property (get, set): String TimeStampCredentials
Default: ""

If a timestamp server requires authentication, use this property to provide the credentials. Credentials commonly
have the syntax "username:password".

12.2.42 TimeStampFingerprint

Property (get): Variant TimeStampFingerprint

The SHA-1 fingerprint of the timestamp server certificate. After validating a signature that contains a timestamp,
this property contains the fingerprint of the timestamp server’s certificate.

12.2.43 TimeStampURL

Property (get, set): String TimeStampURL
Default: ""

The URL of the trusted timestamp authority (TSA) from which a timestamp shall be acquired. This setting is sug
gested to be used when applying a Qualified Electronic Signature. Example: "tsu.my-timeserver.org". Ap
plying a timestamp requires an online connection to a time server; the firewall must be configured accordingly. If a
web proxy is used, it must be ensured the following MIME types are supported:

application/timestamp-query
application/timestamp-reply

If an invalid timestamp server address is provided or no connection can be made to the time server, the return code
of SaveAs is false, and the property ErrorCode is set to SIG_CREA_E_TSP.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 112/121

12.2.44 UserData

Property (get, set): Variant UserData
Default: Nothing

This property has only a meaning if a Custom signature handler is used.

12.3 Enumerations

Note: Depending on the interface, enumerations may have TPDF as prefix
(COM, C), PDF as prefix (.NET), or no prefix at all (Java).

12.3.1 TPDFErrorCode Enumeration

All TPDFErrorCode enumerations start with a prefix, such as PDF_, followed by a single letter which is one of S, E,
W or I, an underscore, and a descriptive text.

The single letter gives an indication of the severity of the error. These are: Success, Error, Warning, and Information.
In general, an error is returned if an operation could not be completed, e.g. no valid output file was created. A
warning is returned if the operation was completed, but problems occurred in the process.

A list of all error codes is available in the C API header file bseerror.h, the javadoc documentation of
com.pdftools.NativeLibrary.ERRORCODE, and the .NET documentation of Pdftools.Pdf.PDFError
Code. Note that only a few are relevant for the 3-Heights® PDF Security API, most of which are listed here:

TPDFErrorCode table

TPDFErrorCode Description

PDF_S_SUCCESS The operation was completed successfully.

LIC_E_NOTSET,

LIC_E_NOTFOUND, …
Various license management related errors.

PDF_E_FILEOPEN Failed to open the file.

PDF_E_FILECREATE Failed to create the file.

PDF_E_PASSWORD The authentication failed due to a wrong password.

PDF_E_UNKSECHANDLER The file uses a proprietary security handler, e.g. for a proprietary digital
rights management (DRM) system.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 113/121

TPDFErrorCode table

PDF_E_XFANEEDSRENDERING The file contains unrendered XFA form fields, i.e. the file is an XFA and not a
PDF file.

The XFA (XML Forms Architecture) specification is referenced as an external
document to ISO 32’000-1 (PDF 1.7) and has not yet been standardized by
ISO. Technically spoken, an XFA form is included as a resource in a shell PDF.
The PDF’s page content is generated dynamically from the XFA data, which
is a complex, nonstandardized process. For this reason, XFA is forbidden
by the ISO Standards ISO 19’005-2 (PDF/A-2) and ISO 32’000-2 (PDF 2.0)
and newer.

PDF_W_ENCRYPT Aborted processing of signed and encrypted document.

PDF_E_PDFASIG Signature would destroy PDF/A conformance. Signature can be forced
using ForceSignature.

PDF_E_INPSIG Input document must not be signed. Signed input files cannot be
linearized, because this would break their signature. Also, the encryption
parameters (most importantly the user password) of signed input files
cannot be changed.

PDF_STMP_E_PSXML Invalid stamp xml data.

PDF_STMP_E_PSSTAMP Invalid stamp description in <ps:stamp>.

PDF_STMP_E_PSOP Invalid stamp content operator.

PDF_STMP_E_PS Stamping error. Unable to stamp document. For example, because of a
syntax error in the stamp XML file.

PDF_STMP_W_PS Stamping warning. Document has been stamped, but a warning occurred.
For example, no layer has been created in order to preserve PDF/A-1
conformance of input document.

PDF_STMP_E_RMLEGACY Error removing legacy stamps (see about[prop:RemoveLegacyStamps]).

SIG_CREA_E_SESSION Cannot create a session (or CSP).

SIG_CREA_E_STORE Cannot open certificate store.

SIG_CREA_E_CERT Certificate not found in store.

SIG_CREA_E_INVCERT The signing certificate is invalid.

SIG_CREA_E_OCSP Couldn’t get response from OCSP server.

SIG_CREA_E_CRL Couldn’t get response from CRL server.

SIG_CREA_E_TSP Couldn’t get response from timestamp server.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 114/121

TPDFErrorCode table

SIG_CREA_E_PRIVKEY Private key not available.

This is usually because a PIN is required and was not entered correctly.

Also, this error might be returned because there is no private key available
for the signing certificate or the key is no properly associated with the
certificate.

Finally, this error could be the result of choosing a message digest
algorithm or signing algorithm which is not supported by the provider.

See section Cryptographic provider for more information.

SIG_CREA_E_SERVER Server error.

SIG_CREA_E_ALGO The cryptographic provider does not implement a required algorithm. See
section Cryptographic provider for more information.

SIG_CREA_E_FAILURE Another failure occurred.

PDF_E_SIGLENGTH Incorrect signature length.

A PDF is signed in a twostep process. First, the output document is
created with space reserved for the signature. Second, the actual
cryptographic signature is created and written into the space reserved. If
the space reserved is too small for the actual signature this error is
returned. In general this error should not occur. If it does, the next signing
attempt should be successful.

PDF_E_SIGABG Unable to open signature background image.

PDF_W_NOENCRYPTION The file is PDF/A and must not be encrypted. Encryption can be forced
using ForceEncryption.

Validation specific error codes

TPDFErrorCode Description

SIG_VAL_E_ALGO Unsupported algorithm found.

SIG_VAL_E_FAILURE Program failure occurred.

SIG_VAL_E_CMS Malformed cryptographic message syntax (CMS).

SIG_VAL_E_DIGEST Digest mismatch (document has been modified).

SIG_VAL_E_SIGNERCERT Signer’s certificate is missing.

SIG_VAL_E_SIGNATURE Signature is not valid.

SIG_VAL_W_ISSUERCERT None of the certificates was found in the store.

SIG_VAL_W_NOTRUSTCHAIN The trust chain is not embedded.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 115/121

SIG_VAL_W_TSP The timestamp is invalid.

SIG_VAL_W_TSPCERT The timestamp certificate was not found in the store.

SIG_VAL_W_PADES The signature does not conform to the PAdES standard, e.g. because the
signature is not DER encoded or the CMS contains more than one
SignerInfo.19

SIG_VAL_W_NOREVINFO Revocation data (OCSP or CRL) is missing for certificate that supports
revocation information.

SIG_VAL_E_NOREVINFO Revocation data (OCSP or CRL) is missing for certificate that supports
revocation information.

SIG_VAL_W_TSPNOREVINFO Revocation data (OCSP or CRL) is missing for certificate in timestamp.

SIG_VAL_E_INVCERT Invalid certificate, e.g. because it has been revoked or is expired.

SIG_VAL_E_MISSINGCERT A certificate required for the operation is missing from the certificate store.

12.3.2 TPDFPermission Enumeration

An enumeration for permission flags. If a flag is set, the permission is granted.

TPDFPermission table

TPDFPermissionFlag Description

ePermNoEncryption Do not apply encryption.

This enumeration value cannot be combined with other values. When
using this enumeration, set both passwords to an empty string or
Nothing.

ePermSameAsInput Use the same permissions as present in the input file.

This enumeration value cannot be combined with other values.

ePermNone Grant no permissions

ePermPrint Low resolution printing

ePermModify Changing the document

ePermCopy Content copying or extraction

ePermAnnotate Annotations

ePermFillForms Filling of form fields

ePermSupportDisabilities Support for disabilities

19 Adobe Acrobat XI classifies such signatures as valid.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 116/121

TPDFPermission table

ePermAssemble Document assembly

ePermDigitalPrint High resolution printing

ePermAll Grant all permissions

Changing permissions or combining multiple permissions is done using a bitwise “or” operator.

Note: The special values ePermSameAsInput and ePermNoEncryption
cannot be combined with any other values.

Changing the current permissions in Visual Basic should be done like this:

Allow Printing

Permission = Permission Or ePermPrint

Prohibit Printing

Permission = Permission And Not ePermPrint

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 117/121

13 Version history

Some of the documented changes below may be preceded by a marker that specifies the interface technologies
the change applies to. For example, [C, Java] applies to the C and the Java interface.

13.1 Changes in versions 6.19–6.27

New support for Elliptic Curve DSA (ECDSA) signature algorithms in the PKCS#11 Provider and Windows Cryp
tographic Provider.
New support for PKCS#11 devices that contain private keys only.
Update license agreement to version 2.9
Improved auto font size feature for text stamping feature.

13.2 Changes in versions 6.13–6.18

Stamping
New attribute layer of <stamp> to create stamp whose visiblity can be controlled by layer.
New value transverse for attribute align of <stamp>.
New variable text element PageNumber.
New variable text elements for document metadata properties, e.g. Author or Title.
New prefix ^ for page numbers in attribute page of <stamp> to count from back of document.

Interface PdfSecure

New property NoDSS.

13.3 Changes in versions 6.1–6.12

Digital Signatures
Swisscom All-in Signing Service

New support for accounts (Identity) based on Swisscom CA 4 Certificate Authorities.
New support to create PAdES signatures (format ETSI.CAdES.detached).

Improved embedding of revocation information (OCSP, CRL, and trust chain) to always use the document
security store (DSS)20.
Changed the creation of signatures of format ETSI.CAdES.detached to include revocation information
if EmbedRevocationInfo is True and if supported by the cryptographic provider.
Improved support for new version of the GlobalSign Digital Signing Service. The service endpoint should
be updated to https://emea.api.dss.globalsign.com:8443/v2.
[C] Changed API of the custom signature handler pdfsignaturehandler.h.

Stamping
New value shrinkRelToA4 for attribute flags of <stamp>.

Improved search algorithm for installed fonts: User fonts under Windows are now also taken into account.
[Java] Changed minimal supported Java language version to 7 [previously 6].
[PHP] Removed all versions of the PHP interface.

20 Use the property NoDSS to restore the previous behavior.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 118/121

[.NET] New availability of this product as NuGet package for Windows, macOS and Linux.
[.NET] New support for .NET Core versions 1.0 and higher. The support is restricted to a subset of the operating
systems supported by .NET Core, see Operating systems.
[.NET] Changed platform support for NuGet packages: The platform “AnyCPU” is now supported for .NET Frame
work projects.

Interface PdfSecure

New property RemoveLegacyStamps to remove stamps created by the PDF Batch Stamp Tool.

13.4 Changes in version 5

Digital Signatures
New support to get CRLs using HTTPS and via HTTP redirection.

New additional supported operating system: Windows Server 2019.
[PHP] New extension PHP 7.3 (non thread safe) for Linux.

Interface PdfSignature

New properties Text1Color and Text2Color to set the color of the signature appearance’s text.

13.5 Changes in version 4.12

Introduced license features Signature and Stamping.
Digital Signatures

New support to sign OCSP requests, if required by the OCSP service.
New support for OCSP requests over HTTPS.
Changed acceptance criteria for OCSP responses that specify no validity interval (missing nextUpdate field,
which is uncommon). Previously a validity interval of 24 hours has been used, now 5 minutes due to Adobe®
Acrobat® compatibility.

New support for encryption according to PDF 2.0 (revision 6, replaces deprecated revision 5).
Improved reading and recovery of corrupt TIFF images.
New HTTP proxy setting in the GUI license manager.
[.NET, C, COM, Java, PHP] New property AutoLinearize to automatically choose whether to linearize the
output document or not.

13.6 Changes in version 4.11

Digital Signatures
New support to create Document TimeStamp signatures using Swisscom All-in Signing Service.
New ability to sign documents that are larger than 2GB (64-bit version only).

Stamping
New default compression Flate for PNG images.

New support for reading and writing PDF 2.0 documents.
New support for the creation of output files larger than 10GB (not PDF/A-1).
Improved search in installed font collection to also find fonts by other names than TrueType or PostScript names.

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 119/121

New treatment of the DocumentID. In contrast to the InstanceID the DocumentID of the output document
is inherited from the input document.
[.NET, C, COM, Java, PHP] Changed enum TPDFPermission: Added a new value ePermSameAsInput to
adopt the encryption parameters from the input document.

Interface PdfSecure

New property DocMdpPermissions: Return the document access permissions of a DocMDP signature.
[PHP] Removed the method Terminate: It is now called automatically by the “PdfTools” PHP extension and
has thereby been rendered obsolete.

13.7 Changes in version 4.10

Digital signatures
New support for the new European PAdES norm (ETSI EN 319 142). See chapter “How to Create a PAdES
Signature” in the user manual for more information.
New support for the GlobalSign Digital Signing Service as cryptographic provider to create signatures and
timestamps.
New signature algorithm RSA with SSAPSS (PKCS#1v2.1) can be chosen by setting the provider session prop
erty SigAlgo.
Improved signature validation.

More signature formats supported, most notably the new European PAdES norm. The Windows crypto
graphic provider now supports the same formats as the PKCS#11 provider.
Support signature algorithm RSA with SSAPSS (PKCS#1v2.1).
New and improved validation warnings.
Check for missing revocation information.
Use validation data embedded in the document security store (DSS).

New ability to add multiple signatures to encrypted files.
Stamping

New attribute flags of <stamp>, e.g. to create modifiable stamps or stamps that are only visible when
printing.
New attribute src of <image> allows a HTTP URL or file path.
New ability to add or modify stamps of signed files that are also encrypted.

New support for writing PDF objects into object streams. Most objects that are contained in object streams in
the input document are now also stored in object streams in the output document. When enabling linearization,
however, no objects are stored in object streams.
Improved robustness against corrupt input PDF documents.
[C] Clarified Error handling of TPdfStreamDescriptor functions.
[PHP] New Interface for Windows and Linux. Supported versions are PHP 5.6 & 7.0 (Non Thread Safe). The Pdf
SecureAPI PHP Interface is contained in the 3-Heights® PDF Tools PHP5.6 Extension and the 3-Heights® PDF
Tools PHP7.0 Extension.
[C] Changed 32-bit binaries on Windows that link to the API need to be recompiled due to a change of the used
mangling scheme.

Interface PdfSecure

New method AddValidationInformation(): Add signature validation information to the document. This
method can be used to create signatures with longterm validation material or to enlarge the longevity of exist
ing signatures.
Changed method ValidateSignature():

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 120/121

The warning SIG_VAL_W_NOTSP has been removed because it is unnecessary and masks other warnings
that have a lower priority. The property TimeStampFingerprint can be used to detect whether a time
stamp is available.
See documentation of the method for a list of new warnings.

[C] Changed API of the custom signature handler pdfsignaturehandler.h.

13.8 Changes in version 4.9

Improved behavior: Before signing, missing appearance streams of form fields are created, because otherwise
Adobe® Acrobat® cannot validate the signature.
Stamping:

New tag <link> to add interactive web links.
New tag <text> allows to format spans in continuous text using nested tags.

Improved support for and robustness against corrupt input PDF documents.
Improved repair of embedded font programs that are corrupt.
New support for OpenType font collections in installed font collection.
Improved metadata generation for standard PDF properties.
[C] Changed return value pfGetLength of TPDFStreamDescriptor to pos_t21.

Interface PdfSecure

[.NET] New methods OpenStream() and SaveAsStream().
[.NET, C, Java] New methods GetRevisionFile() and GetRevisionStream().
[.NET, C, COM, Java] New property ForceIncrementalUpdate.

13.9 Changes in version 4.8

New feature: Images used as signature appearance background or for stamping for PDF/A input files may now
have any color space, even if it differs from the input file’s output intent.
Improved creation of annotation appearances to use less memory and processing time.
Added repair functionality for TrueType font programs whose glyphs are not ordered correctly.

Interface PdfSecure

[.NET, C, COM, Java] New property ProductVersion to identify the product version.
[.NET] Deprecated method GetLicenseIsValid.
[.NET] New property LicenseIsValid.

21 This has no effect on neither the .NET, Java, nor COM API

© PDF Tools AG – Premium PDF Technology 3-Heights® PDF Security API, January 21, 2025 | 121/121

14 Licensing, copyright, and contact

Pdftools (PDF Tools AG) is a world leader in PDF software, delivering reliable PDF products to international customers
in all market segments.

Pdftools provides serverbased software products designed specifically for developers, integrators, consultants, cus
tomizing specialists, and IT departments. Thousands of companies worldwide use our products directly and hun
dreds of thousands of users benefit from the technology indirectly via a global network of OEM partners. The tools
can be easily embedded into application programs and are available for a multitude of operating system platforms.

Licensing and copyright The 3-Heights® PDF Security API is copyrighted. This user manual is also copyright
protected; It may be copied and distributed provided that it remains unchanged including the copyright notice.

Contact

PDF Tools AG
BrownBoveriStrasse 5
8050 Zürich
Switzerland
https://www.pdf-tools.com
pdfsales@pdftools.com

https://www.pdf-tools.com
mailto:pdfsales@pdf-tools.com

	Contents
	1 Introduction
	1.1 Description
	1.2 Functions
	1.2.1 Features
	1.2.2 Formats
	1.2.3 Conformance

	1.3 Interfaces
	1.4 Operating systems
	1.5 How to best read this manual
	1.6 Digital signatures
	1.6.1 Overview
	1.6.2 Terminology
	1.6.3 Why digitally signing?
	1.6.4 What is an electronic signature?
	Simple electronic signature
	Advanced electronic signature
	Qualified electronic signature

	1.6.5 Creating electronic signatures
	Preparation steps
	Application of the signature

	2 Installation and deployment
	2.1 Windows
	2.2 Linux and macOS
	2.2.1 Linux
	2.2.2 macOS

	2.3 ZIP archive
	2.3.1 Development
	2.3.2 Deployment

	2.4 NuGet package
	2.5 Interface-specific installation steps
	2.5.1 COM interface
	2.5.2 Java interface
	2.5.3 .NET interface
	2.5.4 C interface

	2.6 Uninstall, Install a new version
	2.7 Note about the evaluation license
	2.8 Special directories
	2.8.1 Directory for temporary files
	2.8.2 Cache directory
	2.8.3 Font directories

	3 License management
	3.1 License features

	4 Programming interfaces
	4.1 Visual Basic 6
	4.2 C/C++
	4.3 .NET
	4.3.1 Visual Basic
	4.3.2 C#
	4.3.3 Deployment
	4.3.4 Troubleshooting: TypeInitializationException

	5 User guide
	5.1 Overview of the API
	5.1.1 About the 3-Heights® PDF Security API

	5.2 About the API
	5.3 Encryption
	5.3.1 Encryption and how it works in PDF
	5.3.2 Owner password and user password
	5.3.3 Permission flags
	5.3.4 Encrypting a PDF document
	5.3.5 Reading an encrypted PDF document
	5.3.6 How secure is PDF encryption?

	5.4 Fonts
	5.4.1 Font cache

	5.5 Cryptographic provider
	5.5.1 PKCS#11 provider
	Configuration
	Interoperability support
	Selecting a certificate for signing
	Using PKCS#11 stores with missing issuer certificates
	PKCS#11 devices that contain private keys only

	5.5.2 Cryptographic suites

	5.6 Windows Cryptographic Provider
	5.6.1 Configuration
	5.6.2 Selecting a certificate for signing
	5.6.3 Certificates
	5.6.4 Qualified certificates
	5.6.5 Cryptographic suites

	5.7 myBica Digital Signing Service
	5.8 QuoVadis sealsign
	5.9 Swisscom All-in Signing Service
	5.9.1 General properties
	5.9.2 Provider session properties
	5.9.3 On-demand certificates
	5.9.4 Step-up authorization using Mobile-ID

	5.10 GlobalSign Digital Signing Service
	5.11 Custom signature handler

	6 Creating digital signatures
	6.1 Signing a PDF document
	6.2 Creating a preview of a signed document
	6.3 Creating a PAdES signature
	6.3.1 Create a PAdES-B-B signature
	6.3.2 Create a PAdES-B-T signature
	6.3.3 Create a PAdES-B-LT signature
	6.3.4 Create a PAdES-B-LTA signature or extend longevity of a signature

	6.4 Applying multiple signatures
	6.5 Creating a timestamp signature
	6.6 Creating a visual appearance of a signature
	6.7 Guidelines for mass signing
	6.7.1 Keep the session to the security device open for multiple sign operations
	6.7.2 Signing concurrently using multiple threads
	6.7.3 Thread safety with a PKCS#11 provider

	6.8 Miscellaneous
	6.8.1 Caching of CRLs, OCSP, and timestamp reponses
	6.8.2 Using a proxy
	6.8.3 Configuring a proxy server and firewall
	6.8.4 Setting the signature build properties

	7 Validating digital signatures
	7.1 Validating a qualified electronic signature
	7.1.1 Trust chain
	7.1.2 Revocation information
	7.1.3 Timestamp

	7.2 Validating a PAdES LTV signature
	7.2.1 Trust chain
	7.2.2 Revocation information
	7.2.3 Timestamp
	7.2.4 LTV expiration date
	7.2.5 Other PAdES requirements

	8 Advanced guide
	8.1 Using the in-memory functions

	9 Stamping
	9.1 Stamp file syntax
	9.1.1 Stamp
	Coordinates
	Modify content of existing stamps

	9.1.2 Stamp content
	Text
	Variable text

	Images and geometric shapes
	Transformations

	9.2 Examples
	9.2.1 Example 1: Simple stamps
	9.2.2 Example 2: Modify “Simple Stamp”
	9.2.3 Example 3: Add watermark text diagonally across pages
	9.2.4 Example 4: Apply stamp to long edge of all pages
	9.2.5 Example 5: Stamp links

	10 Error handling
	11 Tracing
	12 Interface reference
	12.1 PdfSecure
	12.1.1 AddDocMDPSignature
	12.1.2 AddPreparedSignature
	12.1.3 AddSignature
	12.1.4 AddSignatureField
	12.1.5 AddStamps, AddStampsMem
	12.1.6 AddTimeStampSignature
	12.1.7 AddValidationInformation
	12.1.8 AutoLinearize
	12.1.9 BeginSession
	12.1.10 Close
	12.1.11 ErrorCode
	12.1.12 ErrorMessage
	12.1.13 EndSession
	12.1.14 ForceEncryption
	12.1.15 ForceIncrementalUpdate
	12.1.16 ForceSignature
	12.1.17 GetPdf
	12.1.18 GetRevision, GetRevisionFile, GetRevisionStream
	12.1.19 GetMetadata
	12.1.20 GetSignature
	12.1.21 GetSignatureCount
	12.1.22 InfoEntry
	12.1.23 LicenseIsValid
	12.1.24 Linearize
	12.1.25 NoCache
	12.1.26 NoDSS
	12.1.27 Open
	12.1.28 OpenMem
	12.1.29 OpenStream
	12.1.30 PageCount
	12.1.31 ProductVersion
	12.1.32 RemoveLegacyStamps
	12.1.33 RevisionCount
	12.1.34 RemoveSignatureField
	12.1.35 SaveAs
	12.1.36 SaveInMemory
	12.1.37 SaveAsStream
	12.1.38 SetLicenseKey
	12.1.39 SetMetadata, SetMetadataStream
	12.1.40 SetSessionProperty
	12.1.41 SignatureCount
	12.1.42 SignPreparedSignature
	12.1.43 SignSignatureField
	12.1.44 Terminate
	12.1.45 TestSession
	12.1.46 ValidateSignature

	12.2 PdfSignature
	12.2.1 ContactInfo
	12.2.2 Contents
	12.2.3 Date
	12.2.4 DocMdpPermissions
	12.2.5 DocumentHasBeenModified
	12.2.6 Email
	12.2.7 EmbedRevocationInfo
	12.2.8 FillColor
	12.2.9 FieldName
	12.2.10 Filter
	12.2.11 FontName1
	12.2.12 FontName2
	12.2.13 Font1Mem
	12.2.14 Font2Mem
	12.2.15 FontSize1
	12.2.16 FontSize2
	12.2.17 HasSignature
	12.2.18 ImageFileName
	12.2.19 Issuer
	12.2.20 LineWidth
	12.2.21 Location
	12.2.22 Name
	12.2.23 PageNo
	12.2.24 Provider
	12.2.25 ProxyURL
	12.2.26 ProxyCredentials
	12.2.27 Reason
	12.2.28 Rect
	12.2.29 Revision
	12.2.30 SerialNumber
	12.2.31 SignerFingerprint
	12.2.32 SignerFingerprintStr
	12.2.33 Store
	12.2.34 StoreLocation
	12.2.35 StrokeColor
	12.2.36 SubFilter
	12.2.37 Text1
	12.2.38 Text1Color
	12.2.39 Text2
	12.2.40 Text2Color
	12.2.41 TimeStampCredentials
	12.2.42 TimeStampFingerprint
	12.2.43 TimeStampURL
	12.2.44 UserData

	12.3 Enumerations
	12.3.1 TPDFErrorCode
	12.3.2 TPDFPermission

	13 Version history
	13.1 Changes in versions 6.19–6.27
	13.2 Changes in versions 6.13–6.18
	13.3 Changes in versions 6.1–6.12
	13.4 Changes in version 5
	13.5 Changes in version 4.12
	13.6 Changes in version 4.11
	13.7 Changes in version 4.10
	13.8 Changes in version 4.9
	13.9 Changes in version 4.8

	14 Licensing, copyright, and contact

